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Abstract

Mobile robots are used in the agricultural field in various applications such as har-
vesting, weeding and planting. The automation of traditionally manual tasks has
become more appealing for farmers as they are increasingly faced with challeng-
ing economic and environmental conditions. Many vegetable and fruit growing
farmers in Germany, however, are still dependent on the manual work.
A robotic transportation platform for harvested strawberries is presented that
aims to improve the efficiency of the harvesting process and to facilitate the hard
labor. As one of the most essential prerequisites, the robot has to be able to
drive autonomously through the fields. In this thesis, an autonomous navigation
system is proposed that can be applied to navigate in strawberry fields using the
point cloud data from the ZED2i stereo camera as the only sensor data. After
pre-processing the point cloud data, the height information is used to generate a
grid map containing a two-dimensional projection of all points belonging to the
crop rows. By applying image processing methods, the grid map is then used to
detect the crop rows separately and to fit a line through the center row. Multiple
cluster and line detection methods were implemented and compared with respect
to accuracy and computational time.
In order to achieve a in particular robust navigation system, the methods were
verified in real-world experiments. It was found that a clustering approach in-
spired by the sliding window object detection used in computer vision applications
provides the most robust crop row detection. It is combined with a line fitting
approach that is based on the method of least squares which requires the least
computational time to achieve a reliable navigation system.

Keywords: agricultural automation; field robots; autonomous navigation; crop
row detection; image segmentation; mapping; stereo vision
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Chapter 1

Introduction

There is an increasing demand of autonomous mobile robots in the agricultural
field as human workers are hard to find, especially considering the difficult
circumstances caused by the Pandemic, that the minimum wage is raised and the
population is constantly growing. Semi-automated vehicles and mobile robots
are already being used to assist in a wide range of tasks such as harvesting,
ploughing, seeding and weeding while achieving high precision performance.
They contribute to decreasing the human’s workload and to facilitating and
possibly speeding up work processes. Even though there has already been a
large technological progress in the agricultural sector for the last decades, there
are still many tasks that need to be done by manual labor as they are hard
to automate. Especially when harvesting delicate vegetables and fruits such
as salads, berries or tomatoes the crops need to be handled with greatest care
since they are highly sensitive to pressure and will degrade faster when they are
bruised. While it is hard to mimic the high sensitivity of a human hand with
agricultural machines or robotic end-effectors, it has become apparent that the
use of robots during harvesting season is still beneficial for delicate and high
value crops like strawberries which will be considered in this project thesis.

The picking of ripe strawberries is usually done by humans only. The procedure is
depicted in the images in Figure 1.1. Human workers carry an empty wooden or
plastic box with smaller cardboard container placed inside which can be seen in
the right image. The pickers follow the strawberry rows and place the ripe fruits
into the containers until they are filled. Sometimes small and simply constructed
wheelbarrows are used to carry the box. As soon as the box is full, the farm
workers have to carry the filled box to a trailer located at the edge of the field
to exchange it for a new container with empty boxes. The harvesting season
starts in May and usually ends in July or the beginning of August depending
on the weather conditions and the type of strawberry plant that is used. The
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(a) (b)

Figure 1.1: (a) The harvest worker follow the crop rows and pick ripe strawber-
ries while carrying the harvested crops in containers. (b) A typical
strawberry box contains cardboard containers that are filled with the
ripe fruits.

harvesting procedure of one plant is repeated multiple times as fruits keep growing
and ripening for a time period of four to six weeks. It was found that carrying
the containers is not only a physically demanding task for the farm workers but
also takes about 30 % of the working hours. Therefore, an autonomously driving
transportation vehicle that carries full strawberry containers would already be an
enormous assistance for the farmers. Such a mobile platform needs to be able to
follow the harvest workers whilst picking in the fields to provide a nearby place
where full containers can be placed and where empty containers and boxes can
be stored. As soon as the total loading capacity of the transportation platform
is reached, it needs to autonomously carry the filled boxes to the trailer and then
return to the harvest workers with empty containers. This would reduce required
time for the harvest process by approximately 30 % and would at the same time
facilitate the physical labor.

1.1 Problem Statement

Considering the scenario of strawberry-picking during harvest season that was
described in the previous section reveals that establishing an autonomously
driving robotic platform would mean an undeniable necessary step to facilitate
the hard work of strawberry pickers. While there are multiple approaches for
field navigation to guide agricultural vehicles and mobile robots through the
fields, a mobile transportation platform is needed that supports the workers in a
collaborative work environment with human and robot interaction. Combining
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the indispensable sensitiveness of the human hand with the advantages of a
mobile robotic platform makes the task less physically exhausting and saves
time. To accurately complete the just mentioned tasks the robot has to be able
to precisely navigate in the fields by detecting the crop row structure which can
be done by using a variety of different sensors and detection techniques. While
the field structure and crop row features such as the color and height differ
vastly for different crops, this thesis will only consider strawberry fields.
This project thesis contributes to this goal by presenting a navigation system
that enables a mobile robotic platform to autonomously traverse through straw-
berry fields while taking into account the final goal to be part of a collaborative
environment with human workers. Since the navigation system will be based on
row detection, it is of great importance to choose a robust detection method and
to guarantee a consistent high precision navigation. Considering all challenges
mentioned above, the following requirement list sums up all important properties
that the navigation system must satisfy.

Requirement List:

• robust: against noise such as weed, vegetation gaps and bumps on the
driving lanes

• versatile: applicable under different environmental conditions such as light-
ing and weather conditions, soil and hilly or flat fields

• enables autonomous crop row detection of fully grown crops and row fol-
lowing

• minimal computational cost

• inexpensive: low-cost hardware components (e.g. sensors) to achieve an
affordable product for farmers

• no damaging of plants while following the crop rows

• applicable in a real-time system with low speed (approximately 5km
h )

To fulfil the entire operating principle of a transportation platform the robot not
only needs to be able to traverse a field but also needs to be capable of swapping
lanes and reaching waypoints such as trailers outside the field. Leaving and re-
entering the fields lead to new challenges as the robot reaches a point where it
is not able to detect the row structure within the camera’s range. This task,
however, exceeds the scope of this thesis. It is always assumed that rows are
visible on the camera image and as the robot will never be used on the outer
rows of the field, at least one row next to the center row on each side respectively
will always be present.
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1.2 Thesis Structure

The following section provides a thoroughly overview over state-of-the-art agri-
cultural field navigation approaches using different sensors and methods. Those
methods will be evaluated considering the particular application of this thesis
and, as a result of this, the most promising approach will be identified. The used
hardware forming components of the robotic platform, the structure and main
features of the considered strawberry fields and the currently used navigation
approach is presented. In the subsequent section, the main idea of the chosen
approach will be explained followed by a detailed description of all processing
methods that have been implemented. The experimental evaluation of the pre-
sented approach will then be presented in Chapter 4 by describing the overall
experimental setup and explaining the evaluation methods that were used. This
is followed by an interpretation and critical discussion of the resulting evalua-
tion parameters. Chapter 5 will then conclude the main findings of the project
followed by a short outlook.



Chapter 2

State-of-the-Art

As automated navigation through agricultural fields has been studied and even
applied in the past years there are numerous approaches that have been tested
thoroughly. Although most fields have the typical row structure different crop
types, environmental conditions and other factors make it impossible to get one
perfectly working method for in-field navigation. Even if only strawberry fields
are considered, as it is done in this project thesis, a broad band of different
approaches can be found. The most appropriate sensors and detection techniques
need to be chosen carefully and strongly depend on the requirements given by the
use case. In the following section the available sensors will therefore be viewed
followed by the crop row detection methods that have been successfully applied
in other projects.

2.1 Literature Review

Fountas et. al give a detailed overview of the development of agricultural robots
for research or commercial application in their research paper [FountasEtAl20].
In the paper, the robotic systems are classified according to the field operations
they have been used for. The application area of agricultural robots is split into
eight major operational tasks including weeding, seeding, disease and insect detec-
tion, crop scouting, spraying, harvesting, plant management and multi-purpose
application. Finally, the authors conclude that the most research has been done
on harvesting and weeding robots while seeding and disease detection has been
studied at the least.
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2.1.1 Sensors

The authors of the paper [FountasEtAl20] conclude that for autonomous
navigation in the agricultural sector most robots are equipped with a Global
Navigation Satellite System (GNSS) such as high-precision real-time kinematic
Global Positioning System (RTK-GPS). Even though these sensors usually
provide a sufficient accuracy their performance is affected by signal interruption
and failure due to large changes in the appearance of the field. Additionally,
accurate GPS in all agricultural fields is not guaranteed due to incomplete
coverage. Despite those challenges, an automatically steered tractor is presented
by Blackmore et. al [Blackmore04] that only relies on RTK-GPS signals. The
tractor is able to follow a pre-defined path within a few centimeters offset
but requires additional sensors for obstacle and people detection to become a
practically applicable tool. As mentioned in the paper [Blackmore04], RTK-GPS
can only be used when digital maps of the respective field are available for the
navigation system to generate passable routes between the crop rows. If such
maps are not available GPS markers need to be positioned to define the field
boundaries, the existing row structure and the precise position of the individual
rows. Those markers can be gained from manually driving a vehicle that is
equipped with the appropriate sensors around the field to create a field map, by
for example using remote control. Usually, this is done by generating a reference
path whilst tracking the positional signal of the machinery that is used during
planting or seeding. After the GPS markers have been generated the RTK-GPS
navigation can be used for the whole season independent of the growth stage of
the plants. The accuracy, however, is limited to the fact that the position of the
rows stays unchanged.
When solely relying on GPS or GNSS, changes in the environment and shifted
row positions are not considered. However, such changes can quickly occur due
to heavy rains after seeding, unevenly growing plants or simply by single crops
growing in between rows. For this reason, additional sensors are usually needed
to take unexpected obstacles, human detection and out-of-row growing plants
into account. They can also be used to overcome disturbances of GPS signals
which particularly occur in under-canopy applications or at points in the field
where the antenna gets covered by plants. The additional sensors are even nec-
essary to achieve a robust long-term autonomous navigation system. Examples
for these supplementary sensors are Light Detection and Ranging (LiDAR),
color and stereo cameras. They are used to reconstruct the surrounding area of
the mobile robot and to guarantee a consistent performance of the navigation
system by combining global GPS measurements with local sensor information.
The local measurements obtained by on-board sensors of the mobile robot can
be added to the global GPS map to update the map during the season and to
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record changes in the field.

Many of the sensors that can be used to increase the robustness of GPS-based
navigation can also be used on their own and can provide a low-cost alternative
to the rather expensive RTK-GPS sensors. The recorded data can in most
cases not be used for global localization as the camera only detects parts of
the entire field and doesn’t know its global position in a field map but it can
be used to determine its local position. Local localization or navigation refers
to determining the robot’s position not inside the global reference frame of
the entire field but relative to the detected crop rows. It therefore focuses
on accurately following crop rows without damaging plants and choosing the
steering direction with respect to the local environment. The great advantage of
this navigation approach is that it can be applied in many fields that don’t need
to be equipped with GPS markers or similar preparations.

In many projects local navigation of vehicles in fields is done by using color
images recorded by inexpensive digital color cameras. The images are used to
detect the vegetation in the images using visual differences, such as color and
texture, between soil and vegetation. There is a large variety of different segmen-
tation techniques that will be presented in Section 2.1.2 and have been studied
extensively to even handle visually challenging environments. The segmentation
results are used to determine the goal direction by transforming the information
into the robot’s coordinate frame and generating steering commands. The
ongoing research in applying color cameras in the agricultural sector and the
numerous available techniques demonstrate that there are many factors that need
to be considered to avoid the system to fail. Image Segmentation is especially
hard to realize due to the changing appearance of crops during the season, gaps
between plants, weed, inconsistent illumination and many further sources of error.

Although digital cameras give very reliable results in indoor environments
where constant lighting conditions are given, their performance suffers under
varying illumination. Sensors that are directly providing distance measurements,
such as time-of-flight (TOF) cameras and LiDAR sensors, are less sensitive to
variable lighting conditions than the digital cameras which measure reflectance.
Furthermore, those ranging-based sensors provide a larger range than digital
cameras. 3D LiDAR systems and 3D TOF cameras can be used to generate
point clouds that replicate the environment in three-dimensional space by points
lying within the external surface of the scene. Point clouds can additionally
contain the color information for every point. 3D LiDAR systems and 3D TOF
are usually more cost-intensive compared to the previously mentioned sensors.
Especially 3D LiDAR comes at relatively high costs compare to 2D LiDAR
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but was proven by Zhang et al [ZhangEtAl13] to obtain more accurate results.
LiDAR systems measure the time for the light transmitted by a laser to return
to a receiver to measure the distance of surrounding objects. One of the other
downsides of distance sensors is sensor occlusion which can easily happen due
to leaves. Nonetheless, Velasquez et. al [VelasquezEtAl] where able to build a
LiDAR based autonomous navigation system that runs on low-cost hardware
and can navigate autonomously under the plant canopy. Their robot successfully
navigated through under-canopy tracks of a typical field with only small gaps for
386.9 m without the need of intervention. Similarly, Gai et. al [GaiXiangTang21]
considered the navigation under canopies which is especially the case during
harvest season and for tall plants. Instead of using LiDAR systems, which has
been increasingly used in the past due to decreasing sensor costs, the authors
focus on a navigation system using a TOF-camera. This range sensor measures
distance on the basis of the time of flight of modulated infrared light to get
depth images of a scene. Gai et. al point out that the TOF cameras are more
favorable than LiDAR when considering the low computational overheads at
high acquisition rates and the wider vertical angle. The authors also mention
that using TOF cameras outdoors remains almost unexplored because most
commercially available TOF cameras are equipped with weak light sources
which cannot provide high accuracy under direct sunlight. As a result of their
research, Gai et al confirm the feasibility of a front-facing TOF camera for
autonomous outdoor in-field navigation, since they achieved a mean absolute
error (MAE) of 3.6 cm for mapping the crop rows and a MAE of 5 cm for
inter-row positioning. Compared to LiDAR-based systems the TOF camera is
less effected by sensor occlusion, weeds and leaves. The final system certainly
requires further improvements to overcome limitations due to the maximum
range, a narrow field of view in the horizontal direction, noisy measurement data
and beyond that would benefit from sensor fusion.

Stereo vision cameras combine the advantages of range sensors and color cameras
by exploiting the principle of human binocular vision. The sensor uses at least
two cameras to perceive depth which enables it to generate point clouds and
depth images similar to range sensors and is simultaneously able to detect colors
which is more suitable for the detection of early stage and tiny plants. Kise et. al
[KiseZhangRovira Más05] show a stereo vision based crop row detection method
for tractor guidance that reaches a root mean square (RMS) error of lateral
deviation of less than 0.05 m. Stereo vision cameras are no low-cost sensors but
are usually less expensive than high-precision TOF or LiDAR systems. A further
successfully working navigation system for agricultural tractors is presented by
Hanawa et. al [HANAWAEtAl12] that was independent of the position and type
of the two tested stereo cameras. Their approach uses distant image data to get
3D information from the surrounding area and accomplishes the goal of detecting
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Table 2.1: There are many different sensors that can be used for autonomous
navigation in agricultural fields. Those sensors generate various kinds
of sensor data and are suitable in different environmental conditions.
The comparison of the sensors demonstrates their advantages and dis-
advantages.

Sensor Evaluation Measurement
GNSS + most commonly used sensor

+ proven to reach a sufficient accuracy
- malfunction for under-canopy use
- signal failure can occur
- requires previously generated map (preparation)
- expensive when high accuracy is required
- additional sensors for people detection needed
- doesn’t consider local environment
- doesn’t consider changes of the field

position

TOF + good for objects that are far away
+ wide angular view compared to LiDAR
+ less prone to weed and greens than LiDAR
+ less sensor occlusion than LiDAR
+ 3D features less error-prone to illumination

inconsistency than color data
+ denser data than LiDAR
- expensive sensor
- weak light source not applicable for outdoor use

distance
depth image
point cloud

LiDAR + 3D features less error-prone to illumination
inconsistency than color data

+ wider range than digital cameras
- expensive sensor
- sensor obstruction due to leaves and weed

distance
depth image
point cloud

Stereo
Vision
Camera

+ use color and 3D information
- expensive sensor compared to color cameras
- sensor obstruction due to leaves and weed
- inaccurate measurements in the shade

distance
depth image
point cloud

Color
Camera

+ low-cost sensor
+ many approaches to overcome weed noise, gaps etc.
- only relies on color
- plant color can change during season
- usually crafted for particular crop appearance
- Error-prone to weed noise, gaps, lighting conditions

color image
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10 cm height differences and to stay in a tracking deviation of 5 cm. During the
experiments the major challenge turned out to be the negative impact of shadow
casted by the tractor which led to no distance images being generated in the
shadows.

All sensors listed above present the most commonly used sensors for autonomous
field navigation that can be used as standalone solutions. There is a variety of
additional sensor that can be used to improve the crop row navigation and to
achieve a more reliable system by also considers cases in which the main sensors
fail. Merging different sensor data is called sensor fusion and is used to increase
the safety of the system by embedding, for instance, an obstacle and people detec-
tion system. Van Henten et. al presented their experimental autonomous robotic
platform Cropscout at the Field Robot Event 2004 which is built for research in
precision agriculture for tasks such as weed and disease detection. In their paper
[E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming, V.T.J. Achten, J. Balendonck05]
the authors describe the used navigation system that exploits the advantages
of fusing sensor data. Here, sensors such as an inclinometer, pulse counter, an
ultrasound and an infrared range sensor and whiskers are used to confirm the
row detection based on color images in the visible spectrum recorded by a digital
camera. The resulting system presents a viable solution that is applicable in
real maize field and could obtain the first prize at the Field Robot Event since it
was able to pass all test impeccably. The disadvantage of using multiple sensors
is the increase of costs and the rising complexity of the system which can also
raise the computing time. The Table 2.1 lists the most commonly used sensors
for field navigation, the type of measurement data that is collected and their
pros and cons considering the problem statement given in Chapter 1.1.

2.1.2 Methods

The choice of methods to be applied for a navigation system is limited by the
available sensor data. The selection of sensor should therefore not only depend
on the sensor characteristics but also on the different techniques applicable with
a specific sensor type.

Using only visual feedback works really well for well-structured fields but can
fail when gaps occur due to missing plants in the rows or when noise appears in
the form of weed that covers the ground. Many methods have been presented to
overcome these issues by applying pre-processing steps using filtering and clus-
tering methods to get rid of noise and gaps. Such pre-processing is a key step
in order to detect the crop row structure in two-dimensional color images. The
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processing of the input images is usually divided into two main steps, the im-
age segmentation followed by the line or pattern detection. In his master thesis
[Aske Bay Jakobsen15], Aske Bay Jakobsen mentions the most commonly applied
image processing steps starting with image segmentation. As a result of image
segmentation, a black and white image is generated that distinguishes between
vegetation and ground. Then, a line or pattern detection algorithm is applied
on the binary image to detect the crop rows. As vegetation is expected to be
green the excess green vegetation (ExG) index is often used that can be calcu-
lated from the 3-channels of an RGB image which represent the three colors red,
blue and green. Many crop row extraction methods rely on the ExG index as a
distinguishing feature for vegetation in color images. It is applied as a mask to
accentuate any green in the image which is expected to highlight any vegetation
in the image.
The ExG index is also embedded in the extraction method presented by Yue
Hu and He Huang [HuHuang21] and by Jiang et. al [JiangZhao10] where it con-
tributes to a robust crop row navigation system and can not only help to make
plants more prominent in the image but to also suppresses shadows. After apply-
ing the ExG index, a threshold is set to generate a binary image. The threshold
value can be calculated automatically by for instance using Otsu’s method which
takes into account changing color values due to illumination inconsistency and
varying crop appearance. As an alternative to the RGB color space, other color
spaces such as the YUV color space can be used for segmentation as presented
by Bay Jakobsen [Aske Bay Jakobsen15]. He only uses the U and V layers to
create a binary image which are the only layers containing color information in
the YUV color space. This is done by using the grayscale images of both layers
and turning them into binary images by again using a threshold value. Combin-
ing both resulting images using a logical AND operation then generates a clear
separation between ground and vegetation.
Using color data has led to good results using further improvements such as a
bounding box clustering method used by Yue Hu and He Huang [HuHuang21]
or further changes in the processing steps as they have been presented in
many further research papers [NichollsGreen], [Wang10], [SøgaardOlsen03],
[RomeoEtAl12] to overcome the main challenges occurring from vegetation gaps,
weed noise and poor lighting conditions. A purely vision-based approach is pre-
sented by Ahmadi et. al [AhmadiEtAl20] that is independent of expensive RTK-
GPS sensors and is even able to switch to the next lane. In the project the
ExG index is used to compute a vegetation mask to then compute the crop’s
center point for each mask. Afterwards, a least square fitting method is used to
robustly compute the lines that best fit the center points. In the author’s subse-
quent paper [AhmadiHalsteadMcCool] the approach was enhanced and reached
an accuracy of 3.82 cm in five different crop fields using GPS measurements as
the ground truth. The testing was done for various lighting conditions and is
robust in scenes where large batches of weeds occur. The on-board sensors that
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are used for visual navigation are two RGB-Depth (RGB-D) cameras that are
placed in the front and in the back of the robot and are sufficient to navigate
through the field without knowing the global or local position of the robot.

In addition to the normally used methods for image segmentation, machine
learning approaches are increasingly used for crop row detection especially for
fields where the crop rows are hard to detect or even when their appearance is
not known before. Using such modern deep learning approaches can achieve a
better segmentation than common image segmentation and makes the detection
approaches more applicable for different crop types. The navigation system
presented by English et. al [EnglishEtAl15] consists of a model that takes into
consideration color, texture and three-dimensional structure measurements of a
specific field that are provided by two front facing stereo vision cameras. The
position of the crop rows is estimated by a Support Vector Machine (SVM)
regression algorithm. The vehicle was tested on fields of four different types of
crops. Even though only in the first two fields green vegetation segmentation
was applicable, the algorithm could successfully detect the rows in all fields.
Comparing the row following with the SVM to the path taken when using
high-precision GNSS showed that the maximum RMS error was less than 3 cm.
The authors conclude that the system could even be used as a low-cost solution
by adding measurements of an inexpensive GPS sensor to the output of the
system within a particle filter.
The navigation system in the paper written by Ponnambalam et. al
[PonnambalamEtAl20] also exploits the advantages of using machine learning
for crop row detection. They show that the model can adapt easily to changes
in the crop appearance and can overcome the challenges of an unstructured
outdoor environment by even handling uneven contours of crop fields and
irregular spacing of plants. The segmentation is done using a convolutional
neural network (CNN) that is able to perform a vegetation segment on input
RGB images. As a result, the authors demonstrate an improved performance of
crop row detection compared with other commonly used fitting methods. The
major disadvantage of using deep learning methods is the large amount of data
that is required to train the models. The data acquisition, preparation and
labelling are very time consuming.

Mapping is a widely used approach for autonomous in-field navigation. Field
maps can be used for crop scouting, disease detection, to record changes in the
field over the season and to obtain and store other relevant information for the
farmer. Mapping can be done by updating existing GNSS maps or by building
a map from only local sensor data. The second approach is called occupancy
grid map or feature map generation. It uses the sensor data to generate a grid
map whose cells contain the probability of the space being occupied by an ob-
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stacle. This map generation approach makes use of on-board sensors and can be
used for path planning in rough terrain as it is presented by Annett Chilian and
Heiko Hirschmüller [Annett ChilianHeiko HirschmÃ¼ller09]. Using a stereo vi-
sion camera, the authors show how they reconstruct the robot’s environment for
save navigation through unknown terrain using legged or wheeled robots. While
exploring its environment, the robot is able to constantly update the map and
to plan a suitable path. In their project, the mapping focused on computing the
traversability of terrain by computing a danger value for the map’s cells.
The feature map generation as part of the navigation system designed by Winter-
halter et. al [WinterhalterEtAl18] focuses on building a reliable crop row detection
algorithm for different crop types that is applicable in any crop row stage and
particularly suited for small plants. The main advantage of the approach is that,
after a two-dimensional feature map is generated, the map can be used as a
generic input for the following processing pipeline independent of the used sen-
sor. This leads to a particularly robust crop row detection as the used sensor can
be chosen dependent on the given environmental conditions. To prove this con-
cept, the authors created feature maps based on RGB images and on 3D point
clouds provided by a 3D laser scanner and could achieve a robust navigation
through fields which is especially applicable in precision agriculture. In April
2020, Winterhalter et. al published an article [WinterhalterEtAl21] to present
their improved navigation system. They enhanced their previous approach by
estimating the robot’s position in a GNSS-referenced map of crop row locations
by merging GNSS-based data with the computed feature map. Associating the
uncertain measurements of the on-board sensor that are stored in the feature
map to the known crop row structure in the global GNSS reference map is called
data association.
An alternative way of using reference field maps is shown by Chebrolu et. al
[ChebroluEtAl19]. The authors present a localization approach that uses a field
map generated from camera recordings taken by an unmanned aerial vehicle
(UAV). The approach was evaluated on a real field over various sessions in a
period of time of multiple weeks. Exploiting plant specific features, the method
performs data association to localize the robot in the aerial map by using visual
data from an on-board ZED stereo camera. Continuously updating observations
into the map allows the system to navigate throughout the entire season. The ap-
proach aims to resolve the issue of visual ambiguity due to the repetitive structure
of fields and to cope with changes in the appearance of plants over time.

2.2 Strawberry fields

Strawberries are planted in different ways to increase the yield and protect the
plants. In Figure 2.1(b) the plants are placed on racks which are usually used
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for indoor farming. For this project fields with mounds are considered, because
they are the most commonly used way of planting strawberries in Germany. Such
a field is depicted in Figure 2.1(a). The image shows a typical strawberry field
as it has been used for the experimental evaluation of this thesis. It represents
the prospective work space of the robot. As fields with mounds can be located
both indoors and outdoors, the navigation system is challenged with varying en-
vironmental conditions. The raised mounds serve as a base for the strawberry
plants. Hence, a distinctive height profile is expected that undergoes minor neg-
ligible positional changes after planting. The vegetation is always significantly
higher than the ground even before the fully grown stage is reached. Farmers use
mounds to get improved conditions for their plants including drainage, increased
air circulation around the plants and preventing diseases to spread. Black foil
is used to cover the mounds especially before planting season begins to protect
the soil and to prevent weed to grow. While the strawberry plants are placed on
the loose and evenly humidified soil of the mounds the tracks between the crop
rows gain less attention as weed or soil compaction doesn’t harm the development
of the plants. This aspect is where the strawberry fields vary the most in their
appearance. While some farmers put straw on the tracks causing a uniform ap-
pearance, others hardly take care of weed removal. When the strawberry plants
are fully grown, they tend to not only cover the soil of the mounds but their
canopy of leaves also tends to hide large parts of the tracks in-between rows.

The crop row structure is predefined in the planting season and only slightly varies
throughout the season due to environmental influences. The inter-row distance

(a) (b)

Figure 2.1: There are many different methods available to protect the strawberry
plants for yield increase. The most commonly used methods of Ger-
man strawberry farmers are to plant their strawberries on mounds
(a). Alternatively, racks are used (b). Both methods help to protect
the strawberries from insects, weeds and to improve water drainage.
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is fixed to 1 m and the rows are always parallel. The mounds have a height of
20 cm and their base is up to 40 cm wide.

2.3 Robotic Platform

The mobile platform that was used for the project was chosen on the one
hand to be able to traverse through possibly rough terrain as it is common
in agricultural work environments and, on the other hand, to build a low-cost
vehicle. The robot consists of four wheels and is actuated by a differential
drive acting on both front wheels. The differential drive is a two-wheeled
drive system with independent actuation of each wheel used to drive the robot
forward. A DC motor controller provided by Roboteq is used. The height of
the platform is chosen such that it allows the robot to drive over strawberry
rows without damaging the fully grown plants planted on standard-sized mounds.
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yz

Robot Frame

Camera Frame

Ground Plane
of the Field

Center Line of
Middle Crop Row

Figure 2.2: The transformation between camera frame (red), robot frame (green)
and ground plane (orange) need to be considered in the navigation
system.
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Furthermore, each of the front wheels has a width of 27 cm. The total width of
the robot which is measured at the front wheels 1.2 m. Those dimensions are cho-
sen to enable the robot to drive over the crop row spaced at a standard distance
of 1 m, as mentioned above. The measurements result in a maximum possible
lateral offset of 26 cm for the robot to stay within the inter-row tracks.
The front side of the robot can be equipped with a sensor to collect data of the
robot’s environment and includes a box containing all required electrical compo-
nents leaving the rest of the platform for storage purposes. To achieve a maximum
storage space the platform can be extended with side panels to load further har-
vest boxes. For the project, the ROG Zephyrus G15 laptop by ASUS was used
to run the code. While a laptop is not useful for processing in the final product,
it is an appropriate device for testing and visualization for a first experimental
validation of the output while running in the fields. To enable the communication
between all included devices CANopen, a communication protocol, is used. The
Controller Area Network based (CAN-based) communication system is built for
embedded systems and is mainly used in automation.
The image in Figure 2.2 shows the way the camera is mounted on the robot.
The camera’s frame is marked in red with its y-axis pointing towards the viewing
direction. The camera is located at the center of the front side of the robot and
points to the ground with a pitch angle of 30 ◦. For accurate results, this angle,
which is part of the extrinsic parameters of the camera, needs to be measured
precisely as it is used to transform the measured point cloud data from the cam-
era’s coordinate frame to the robot’s coordinate frame. The reference frame for
all processing steps on the point cloud is always the robot’s frame originated at
the middle of the front side of the robot which is marked in green in Figure 2.2.
The y-axis of the reference frame points towards the direction of travel. As can
be seen in Figure 2.2, the x-y-plane of the robot’s coordinate system is aligned
with the ground of the field, highlighted in orange. Hence, the positive z-axis is
perpendicular to the field’s ground plane and points towards the sky. Both, the
origin of the robot’s frame and the origin of the camera’s frame lie on the z-axis
of the robot’s frame. Unless otherwise stated, everything will be considered in
the robot’s coordinate frame.

2.4 Row Navigation Algorithm

The currently applied approach uses the point cloud data to extract required
information of the surrounding row structure for navigation. First, the input
cloud is cropped and a voxel grid filter is applied to reduce the amount of data
to be processed. A detailed description of how those filters work is given in the
following Chapter 3. The cloud is then rotated around the x-axis until its height
reaches a minimum value to align the field’s ground plane with the x-y-plane of



2 State-of-the-Art 17

the robot’s frame. A slice is extracted from the point cloud that is parallel to the
robot’s x-z-plane and is located 2 m in front of the robot. The slice has a thickness
of 0.5 m in y-direction. All points that lie inside this slice are projected on the
x-z-plane to generate a two-dimensional image. The side length of each square
pixel is 0.0069 m. All pixels containing points independent of their y-position in
the slice are black. The remaining pixels are white. This black and white image is
then pre-processed to remove noise. To get the shape of the mounds as a discrete
linear convolution only the highest z-value is chosen for each x-value as it can be
seen in Figure 2.3. The x-coordinate for the maximum z-value is chosen as the
location of the center row which is marked in red in the graph. The difference
between the robot’s x-position, which always lie in the center of the image, and
the row position is used to calculate the lateral distance between robot and crop
row. This value is used as the input command for the controller.
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Figure 2.3: Result for the extracted height profile of the reference method that
is currently used for autonomous field navigation.





Chapter 3

Methodology

Overall, there are various valid approaches that have been studied for au-
tonomous crop row navigation that can be applied in different use cases. As the
robot needs to collaborate with the pickers, on-board sensors are a requirement
for safety reasons and will allow the robot to follow the workers during harvest.
For this project, the robot is only required to perform a local navigation by
determining its position relative to the surrounding crop rows to traverse through
the field without damaging plants. GPS markers are not included in the current
development status but will most probably be used for more advanced versions of
the robot. They are necessary when the global position of the robot needs to be
known especially when leaving the field environment. As this is not required at
the current stage of technology and the platform should be a low-cost solution,
the ZED2i camera from Stereolabs is selected as the only sensor needed for the
navigation system.
During harvesting season, the inter-row space has strongly varying colors and
texture and can even be covered by green leaves from the strawberry plants
and other plant material. For this reason, it is unfeasible to build a reliable
segmentation by only using the information stored in color images. Besides, the
fields will always exhibit a clearly visible elevation profile as most strawberries
are planted on top of mounds and as only fully grown strawberry plants are
considered. The chosen stereo camera is an appropriate sensor to provide
3D environmental data and comes at a lower price than most range sensors.
Purely relying on 3D data contributes to a reliable navigation system nearly
independent of weed noise and gaps as the mound structure will always be
present. It is also less error-prone to varying lighting conditions compared to
color cameras.
The ZED2i camera provides an IP rating of 66 which guarantees a reliable
performance in rough outdoor environments. The two digits stand for full pro-
tection against dust and similar particles including a vacuum seal that was tested
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against continuous airflow and resilience to high pressure jets. Furthermore,
stereo vision cameras are well suited for the detection over long distance and
of moving objects. The ZED cameras are passive sensors which don’t have any
lasers or LEDs as active sensors have. Passive stereo vision can be much more
affordable than other 3D machine vision technologies and is suitable for most
ambient lighting conditions because they don’t suffer from sunlight interferences
since they are not using IR light. The ZED2i camera is also equipped with a
polarizing filter that is placed in front of the camera to filter out sunlight. This
helps to decrease reflections and increase color saturation making the sensor
more suitable for outdoor applications. While the ZED2i camera provides a good
sensor for the development of the navigation system due to its high-definition
and robustness to challenging outdoor conditions lower-cost alternatives can be
considered. The Intel RealSense Depth camera was utilized as an instance for
such a sensor to test, if it achieves a similarly robust in-field navigation.
When taken into account the broad research that has been done on autonomous
in-field navigation, it becomes obvious that there is only little research on
using stereo vision cameras as the only sensor. Most papers using stereo vision
cameras still rely on additional information from GNSS or only use the color
images obtained by the camera. Using only 3D information from point clouds
and depth images is usually done when using range sensors as a measurement
device. Therefore, this project will contribute to a research field that needs to
be investigated in more depth and will look into applications during harvesting
season.
Using machine learning algorithm for a more reliable crop row detection is not
applicable in this thesis as the data available at this time in point is not sufficient
to train a neural net in order to get satisfactory results.

The pipeline of data processing is split into two main parts, the segmentation
and the row detection. In the segmentation step the point cloud data is used as
an input to segment the vegetation from the ground using height information.
This step results in a binary grid map which is equivalent to a black and white
image as its cells are either filled with 0 or 1 which stands for vegetation or
ground respectively. In the second part image processing steps such as clustering
and line detection are performed on the binary map to detect the three center
crop rows. Finally, the results of the row detection is used to generate steering
commands. The separate steps can be seen in Figure 3.1 which at the same time
represents the core nodes of ROS which has been used as a framework for this
project.
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Figure 3.1: The input point cloud is processed to generate a two-dimensional
binary grid map. This grid map is then used to detect crop rows
to determine the steering commands for the robot. The nodes are
displayed with a red, the topics with a blue and the processing steps
with a green frame.
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3.1 Segmentation

The input point cloud processing starts with first converting the ROS point cloud
message into the points cloud message in the point cloud library as most process-
ing steps make use of the library.

3.1.1 Pre-processing

Since the approach only relies on detecting the three center crop rows a region
of interest (ROI) is selected in the next step. This is also done to reduce the
size of the point cloud and to get rid of measured points that are far away as
the probability of measurement errors increases with increasing distance to the
camera. The point cloud library provides a passthrough filter which cuts off all
points that are placed beyond a pre-defined range. The ROI includes points at a
distance of 3 m in direction of travel and of −2 m and +2 m in x-direction. Points
that are higher than the expected maximum plant height of 3 m will also be cut off
with the passthrough filter. It can be assumed that they represent measurement
mistakes or obstacles like humans, animals or other objects not belonging to the
crop field structure.
Then, a downsampling step using a voxel grid filter is performed to reduce the
data, which means reducing the number of points. It is an essential step to
keep the computational cost as low as possible. The voxel grid filter divides
the space in which the point cloud is placed into a three-dimensional grid with
individual three-dimensional boxes as grid elements. The grid elements have
a given side length also called the leaf size. The voxel grid filter iterates over
all points in the cloud. All points located inside the same grid element will be
approximated with their centroid. While this approach is more time-intensive
than just choosing the center of the grid element, the resulting point cloud is a
more accurate presentation for the input cloud. This downsampling method is
applied after the passthrough filtering, because it is more time-intensive when
comparing the processing steps on the same input data.

3.1.2 Alignment of Frames

The extrinsic parameters of the camera are measured before navigating through
the field to transform the point cloud into the robot’s frame. This approach
doesn’t consider if the camera is not mounted correctly or if it changes its ori-
entation over time. It also disregards hilly fields, bumps or similar unevenness
of the ground. Since only the ROI is used for detection and the fields have a
mostly even ground and no hills, the crop row navigation is still applicable while
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neglecting uneven surfaces. The disturbances occurring due to such conditions
are expected to be only of short periods of time and to only cause insignificant
deviations. While a dynamic alignment of the point cloud is required to get more
accurate results and to enable passing through rougher and hilly fields, further
research need to be done in future work as it is out of the scope of this thesis. The
alignment could possibly be done by applying a plane detection method to apply
the correct transformation of the point cloud and by including inertial measure-
ment unit (IMU) data.
To place the point cloud with the ground plane of the robot’s frame the point
with the smallest z-value is placed inside the x-y-plane and set to z = 0 as they
are positioned on the surface of the ground in the inter-row space.

3.1.3 Map Generation

After the point cloud has been transformed and the ROI has been selected, a
segmentation of ground and vegetation is performed. Since the strawberry plants
are placed on mounds it can be assumed that points of the cloud that are at
a predefined height from the ground plane belong to plant while the remaining
points belong to the ground. That is why a height threshold is defined that de-
termines if points are considered to be part of the ground or the crop row. While
the threshold value can be chosen dynamically by calculating the z-range of the
cloud. It has however become clear that a fixed threshold value results in a more
accurate grid map because the mounds have a constant height and the impact of
obstacles or noisy data will be reduced.
After all points have been classified as either vegetation or ground, the extracted
points belonging to the vegetation are stored in an array. These points are
transferred inside a grid map which represents the x-y-plane and contains the
x-y-coordinates of the vegetation. After setting the resolution of the map and
initializing an empty map only containing 0 entries, cells that comprise vegetation
points are set to 1. The position of the points in the map only depends on the x
and y-coordinates and doesn’t take into account the z-value. All remaining cells
containing 0 indicate ground. The grid map visualizes the crop row structure
projected on the ground plane. In Figure 3.2 such a grid map is visualized. Fig-
ure 3.2(b) image demonstrate an Occupancy Grid map visualized by ROS which
is generated from the field shown in the camera’s color image in Figure 3.2(a).
The point cloud data is only used to extract height information for segmenta-
tion and is not used for further line fitting or clustering as this consumes more
computational power than processing two-dimensional images such as the grid
map.
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(a)

(b) (c)

Figure 3.2: (a) A RGB image is recorded by the ZED2i camera while the robot
drives through a strawberry field. (b) The information included in
the point cloud data is used to extract row features to generate a
binary grid map. All points belonging to vegetation are extracted
from the cloud and projected on the map. (c) The grid map can be
processed as a black and white image. White pixels represent crop
rows.
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3.2 Row Detection

In the second processing step the grid map is first converted into an OpenCV
black and white image which can be seen in Figure 3.2(c). The cells of the grid
map represent the pixels of the image and their values 0 and 1 stand for either
white or black respectively. The OpenCV library is used for the image processing
because it is a programming library that provides a variety of real-time computer
vision methods. The goal of the second step is to estimate the center line of the
center crop row to generate steering commands.

3.2.1 Pre-processing

Pre-processing steps are used to unite clusters belonging to the same crop row
and to get rid of noise represented by isolated white pixels which can occurs for
example due to weeds or measurement errors. Dilation, a morphological filter, is
applied that convolves the image with a kernel. The used kernel is square shaped
with its anchor point being placed at the center. When the kernel is scanned over
the image the maximum pixel value is computed for the pixels that overlap with
the kernel resulting in bright regions to grow. This helps to merge clusters that
belong to the same row but that are separated in the map due to vegetation gaps
within rows. Erosion, the opposite filter of dilation, is applied to remove noise in
the inter-row space to obtain a cleaner binary image.

3.2.2 Clustering

After the pre-processing of the grid map is completed the cluster detection is
performed. Two clustering method, here referred to as contour clustering and
window clustering, were implemented.

Contour Clustering
A connected-components analysis using the scikit-image library is used to detect
clusters of white pixels and to filter out small noise regions in the binary input
image. All white pixels that are connected with each other belong to the same
group and are assigned with the same label. This is done by scanning all pixels
of the image to identify regions of connected pixels. For each white pixel their
four neighbors, that have already been scanned, are examined. A new label is
assigned to the pixel if all four neighbors are black. If only one neighbor is white
the white pixel is assigned the same label. In case more than one neighbor is
white one of the labels is assigned to the current pixel and a note of equivalence
is made. After the completion of the scan, a unique label is assigned to each
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class and the equivalent label pairs are sorted into equivalence classes. During a
second scan each label is replaced by the label assigned to its equivalence class.
A mask is generated for all labels that contain a minimum number of pixels to
only select the large clusters and to mask out noise.
The contour for each mask is detected in the next step. Then, for every contour
a rectangle is positioned in such a way that it encloses the entire contour as well
as its area reaches a minimum. An example image of such cluster detection can
be seen in Figure 3.3(a). The angle of the rectangle defines the orientation of
each cluster. If weed in between crop rows occurs or the robot traverses uneven
ground rows possibly occur as one cluster in the feature map. If this happens, the
width of the row is detected to be larger than the expected row width of 120 m.
If the width is exceeded the cluster is invalid resulting in a failed detection that
will be disregarded for steering. Rectangles that have a slope larger than 140 ◦

or an angle smaller than −40 ◦ are deleted as their orientation lies outside the
maximum possible range. The slope of each detected rectangle is also compared
to the average slope of the other rectangles. If the angle difference between the
slope of a rectangle and the average slope of the remaining rectangles is larger
than the maximum allowed angular deviation of 20 ◦ the cluster is neglected.

(a) (b)

Figure 3.3: (a) All white pixels that are enclosed by the same contour line are
detected as one cluster and displayed with their bounding rectangle
of minimum area. (b) All detected clusters belonging to the same
crop row are then merged and again displayed with their bounding
rectangles of minimum area.
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As multiple clusters can belong to the same crop row, if for example vegetation
gaps occur in the gid map, the respective clusters need to be merged. This is
done by comparing the offset of the center lines of each cluster. Using the center
line including its orientation with respect to the robot’s frame the distance
between the robot and the related crop row can be computed. If the difference
of the row’s lateral position is smaller than a 25 cm the clusters are merged as
they belong to the same row. This is depicted in Figure 3.3 where the clusters
2, 6 and 7 are merged. The center crop row is assumed to have a maximum
lateral offset of 25 cm. If all clusters are located further away than this distance,
the center crop cannot be detected. After the center row detection, the left
and right crop rows are determined by choosing the clusters with the closest
negative and positive offset respectively. The left and right cluster or the center
cluster detection needs to succeed to apply the subsequent line detection method.

Window Clustering
The second clustering method is used to avoid false row association due to false
crop row merging and separation that was observed when applying contour
clustering. The method is inspired by the sliding window method that is mainly
used in computer vision for object localization. This is done by moving a
window formed by a rectangular region of a fixed height and width over an
image. An object detection algorithm is then used to detect the object in the
respective window. The idea of using multiple windows enclosing parts of the
crop rows is used in several crop row detection approaches. Garćıa-Santillán et al.
[Garćıa-SantillánEtAl18] obtain binary images from vegetation segmentation
using the ExG index and then divide the image into 10 substrips. For each
substrip and each of the four rows that are to be found a micro-ROI which is
here referred to as “window” is placed in the image. The initial points of the
crop rows are computed by getting four peaks of the Hough polar space that
is calculated in the lower half of the binary image. The windows of predefined
dimensions are then placed in each substrip such that they enclose the maximum
number of white pixels and thus the strawberry plants. Following this approach
even curved rows can be detected by applying appropriate line fitting like the
least square technique for linear and quadratic polynomials. Similar approaches
placing micro-ROIs in horizontal strips before fitting the row’s center line
in the binary image are presented in further reports [PonnambalamEtAl20],
[ZhouEtAl21].

In this project the binary image is also split into horizontal strips as it is previously
known that the crop rows will be present at each y-position, synonymous with
the height of the image. Solely the x-position and slope of the row with respect
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(a) (b)

Figure 3.4: (a) The windows are placed over the crop row such that they are
placed at the average position of all white pixels belonging to the same
row cluster. (b) All white pixels enclosed by the windows belonging
to one row are considered to be part of the crop row cluster.

to the robot’s frame varies. Each strip comprises a part of the clusters of all three
guiding crop rows. These white pixels are localized for each strip and each row
separately by selecting a search region of the image to then determine the center
of the present white pixels and thus the position of the row. The dimensions of the
search region are dependent on the crop row width, the inter-row distance and the
maximum lateral distance to be expected. While in the approaches mentioned
above the initial center point of the window for the first strip is determined
applying laborious methods, here the previously known features of the strawberry
fields are exploited. As the robot’s wheels are always placed to the left and the
right of the center crop row, the lateral distance and angle between robot and
field frame is constrained. In the first strip, which is the horizontal region that
is closest to the robot, the impact of the angular difference between robot and
field frame on the lateral offset is negligible. It needs to be considered for the
upper strips of the more distant regions, since it proportionally increases with
the distance from the robot. This is considered by setting the base x-position of
the search window to the x-coordinate of the x-position that was determined in
the previous strip for the same crop row. In Figure 4.10(a) the positioning of the
search windows can be seen. Afterwards, all white pixels enclosed by the windows
of the same row are extracted and defined as the row cluster as it is displayed
in Figure 4.10(c). The offset between the robot’s frame or the previous window
and the crop rows is assumed to be zero. This assumption is valid as the robot
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is always placed between rows and will therefore not exceed a maximum offset.
Crop rows connected by white pixels cannot be detected as one crop row as the
width of the window is set invariably. The approach is also chosen to minimize
the effect of isolated white pixels or small batches of white pixels occurring due
to noise and to reduce the effect of overhanging shoots. No crop row is detected
if no or too few white pixels are present in the image.

3.2.3 Line Detection

The rows of the considered fields are always straight, so that their center lines
can be presented by the equation y = mx + b of a straight line. In this thesis
three different line fitting algorithms were implemented and evaluated in terms
of computational time and correctness.
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Figure 3.5: A noisy dataset of points is given as an input to the Hough Line
method. For each point a family of lines can be found and plotted as
a sinusoid. The intersection represents the common line of all points.
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Hough Lines
The Hough Line Transform is a method that is used to detect straight lines in
grayscale or, as is the case here, in a binary image. The lines are represented in
the polar system and can be describes with the equation r = x ·cos(θ)+y ·sin(θ).
For each point P = (xp, yp) a family of lines can be defined by the pair (rθ, θ)
representing all lines that pass through P. In the left image of Figure 3.5 a noisy
dataset of points forming one line is shown. For each point of all considered
points in the given image the family of lines can be plotted as a sinusoid in the
θ-r-plane. For the crop row detection, the white pixels belonging to the same
row are used as the point dataset. The sinusoid of the point dataset is shown in
the right image of Figure 3.5. Using the OpenCV function “HoughLinesP” only
points for r > 0 and 0 < θ < 2π are considered. Plotting this sinusoid is done for
every point in the dataset. An intersection of two plots indicates that two points
have the same line. The number of intersections equals the number of points
that are passed by the line. If this number of points exceeds a given threshold,
the line is declared as a valid line. Here, a more efficient implementation, the
Probabilistic Hough Line Transform, is used which gives the extremes of the
detected lines as an output. It only uses a subset of the input data points that
are randomly chosen to speed up the computations. Line segments that have a
maximum allowed gap and segments with a minimum length are considered. All
detected lines are then used to calculate the average line which is considered as
the row’s center line.

M-estimator
The “fitLine” method provided by the OpenCV library is based on the M-
estimator which is an extremum estimator that searches for the zero of the es-
timating function. It iteratively fits the line using the weighted least squares
algorithm. It minimizes the sum of the distance function between all considered
points which are all white pixels of the crop row and the line. The distance func-
tions, specified by the parameter “DistType”, that are applied here are ρ(r) = r2

2
(DistType = L2) and

ρ(r) =


r2

2 if r < C

C · (r − C
2 ) otherwise

C = 1.345

(DisType = DIST HUBER). The first is the simplest and the fastest least square
method, whereas the second distance function results in a Random sample con-
sensus (RANSAC) fit. RANSAC is an approach for parameter estimation that
uses the minimum number of data points to estimate the desired solution. It
is based on resampling as new the chosen set of data points is enlarged by new
points until a suitable model is found. The process is repeated by a maximum
number of iterations that needs to be chosen high enough to achieve a set of data
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points with a sufficient number of inliers. In the following, the methods will be
referred to as Least Square and RANSAC line method.

Bounding Rectangle
The third line detection method, the Rectangle line method, draws bounding
rectangles of minimum area around the white pixels of each cluster as it was
done when assigning the detected clusters to the respective rows. The center line
of the rectangle defines the center line of the crop row.

3.2.4 Row Definition

The three center rows closest to the robot are used to navigate the robot along
the rows. Each crop row is defined by two points that are located on the x-axis
of the robot’s frame and on the upper edge of the map image. The x-coordinate
of the first point which is located on the x-axis of the image represents the lateral
distance between the considered frames. Due to the perspective of the camera
lens, defined by the position of the camera at the center of the robot, the cluster
of the center row can be detected more reliable than the position of the outer
rows. Therefore, only the center rows position is used for navigation. In case
that the center row cannot be detected, the average line of both outer rows’
center line is used to generate steering commands. If all three rows are detected,
both calculated center lines are compared. As all rows are anticipated to be
equally spaced and to be parallel to each other the calculated center lines should
be identical. If significant divergences arise, the computed center line will be
neglected for the steering commands as it probably originates from measurement
mistakes, noise or false detection. The frequency of neglected measurements is
tracked for safety to detect potential malfunction. If the detection has failed
several times consecutively, the robot needs to be stopped before drifting out
of the lane. The approach is based on a data association strategy similar as it
was presented by Winterhalter et. al [WinterhalterEtAl21]. The authors project
their detected row pattern into a previously defined map containing the entire
crop row structure. Generally, data association aims at finding correspondences
between uncertain measurements and known structures and features to assign
the measurements to the known parts. In this project, each detected row is also
associated with one of the three main guiding crop rows. The rows, however, are
extracted separately and are not detected as a pattern with constant geometrical
features such as the inter-row distance.
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3.2.5 Steering Commands

Similarly to the previously used navigation approach presented in Section 2.4, the
lateral offset between the robot’s frame and the center row is used as the steering
command. It is obtained by computing the difference between the robot’s x-
position and the center row’s x-position 2 m in front of the robot. The offset
value is mapped to a value between -1 and 1. If the distance is larger or smaller
than −1 m the value is 1 or -1 respectively. This value is then sent to the motor
controller which converts it into actuation commands for the two motors.



Chapter 4

Experimental Evaluation

For the development of the algorithm recordings of different strawberry fields
taken by the ZED2i camera were used to do first improvements and tests. The
recordings were taken while the robot was navigating through the strawberry
fields during harvesting season either remotely controlled or by steering au-
tonomously. In order to achieve a navigation algorithm that enables robust
steering, recordings from fields at different stages throughout the strawberry
season were used. Robustness is here stated as the capability of the algorithm
to reliably produce crop row pattern that are close to the actual environment,
despite of challenging environmental conditions such as weed, varying lighting
conditions and gaps. This is crucial for autonomous row following and is this
project’s main objective. The algorithms of the different methods were applied
not only on recordings from different strawberry fields but also during real-world
experiments to verify and improve the approaches and for troubleshooting.
To evaluate the localization approach, final experiments were performed on a
strawberry field with mounds. The experiments took place after harvesting
season on a field that was already planted for the following season and kindly
provided by a regional farmer in Winsen (Luhe). Nonetheless, as can be seen
in Figure 4.1, the plants were nearly fully grown and were hence suitable to
replicate a field during harvesting season. The inter-row space was only covered
by small weeds and vegetation gaps of one missing plant at the most were
included in the experiment. Even though varying appearances due to different
growth stages were considered, the navigation will be applied for harvesting only
and does not need to perform well for early season.
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(a) (b)

Figure 4.1: (a) The field taken for the experiments has small weeds in the inter-
row space and some gaps due to missing plants. The mounds are
newly formed and guarantee a neat structure. (b) A lashing strap is
placed along the center line on top of the crop row to be used as a
ground truth reference.

Each time that the test environment is changed the parameters for the detection
algorithm need to be tuned. This includes the z-height of the points that is
extracted for the row detection and the rotation parameters of the point cloud
such as the pitch angle which can change due to inaccurate orientation of the
camera introduced while mounting. These parameters are adjusted to ensure
that the camera frame’s x-y-plane and the ground plane are parallel to each
other. In the currently used navigation method that was explained in Section 2.4
the plane alignment is already implemented. The approach will here be referred
to as reference navigation. When using the ZED2i camera, the point cloud also
needs to be shifted 6 cm to the right as it is represented in the left camera frame.
As describe in Section 2.3, the camera frame and the robot frame are assumed
to be identical. All adapted parameters are set constant throughout the entire
experiment such that testing the different approaches is not affected.
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4.1 Evaluation Method

To get a direct comparison of the approaches a fixed section of the field with a
track length of approximately 12 m was selected to autonomously run the robot
using each of the algorithms one after the other. Additionally, the same section
was run using the input data of the Intel RealSense camera to check if a low-cost
stereo camera can achieve similar results. For this run the contour clustering
and the RANSAC line detection methods were used. The reference navigation
approach was also applied on the same experimental track to compare the
steering commands for further comparison.

(a) (b)

Figure 4.2: (a) The point cloud generated by the ZED2i camera contains color
information. (b) All points belonging to the orange lashing strap are
extracted by only selecting points of its color.

As it can be seen in Figure 4.1(b), a bright orange lashing is used as a reference
for the position of the center row. During the experiments, the strap with a
length of 12 m and a width of 5 cm was placed along the center line on top of
the middle row. The point cloud generated by the ZED2i camera is displayed
in Figure 4.2(a). As the RGB values of the color of the strap significantly vary
from the environment’s colors, the points belonging to the strap in the recorded
point cloud can be extracted as it is shown in Figure 4.2(b). The points are then
projected on a black and white image which is pre-processed using morphological
filters to get rid of wrongly extracted points. The RANSAC line fit approach is
used to fit a line through the extracted pixels to attain a ground truth reference.
The strap doesn’t affect the crop row detection, since the approach doesn’t take
into account the color of the points. In addition, the strap was pushed down
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such that it was always placed lower than the outer leaves of the plants.

Ground Truth:
Strap position

Detected Center Line

Offset Deviation: a-b

a
b

Y = 2 m

Robot Frame
Lateral Offset

x
y

Robot

crop row

Figure 4.3: The performance of the tested approach is evaluated with respect to
the offset deviation and the lateral offset. The lateral offset is the
lateral distance between the center row and the robot frame as it
is investigated in Section 4.3.1. The offset deviation is covered in
Section 4.3.2 and is defined as the difference between the detected
and the actual crop row position measured 2 m in front of the robot.

The lateral offset, illustrated in Figure 4.3, of the robot with respect to the row
structure is used to evaluate the methods. It is desired to be as small as possible
and should not exceed the maximum possible value of 26 cm to be counted as a
valid run. The sketch is only given to illustrate the experimental setup and the
evaluation measurements. It is only schematic and not true to scale.
The robustness of the methods is evaluated by the deviation of the lateral dis-
tance between the center row 2 m in front of the robot and the y-axis of the
robot’s frame. The deviation is obtained by subtracting the detected x-position
of the center line from the ground truth x-position given by the lashing strap at
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y = 2 m.
The number of frames that could not be used to successfully detect a row pattern
or fit lines through the detected clusters is counted as an additional evaluation
parameter for performance monitoring.
The computation time for the clustering methods was recorded while the experi-
ment. It is a limiting factor for the speed of detection and thereby determines the
maximum speed of the robot for navigation. Reducing computational time is not
a main target of this thesis as the driving speed is not of great importance for a
harvest transportation platform as it only operates at low speed while following
harvest workers. It also needs to stay at a moderate speed when navigating to
the drop-off point for safety reasons. Requiring high computational resources,
however, also mean higher costs of the hardware components.

4.2 Limitations of the Evaluation Method

There are four main limiting factors that need to be considered when viewing the
findings of the experiment. First, the accuracy of the ground truth measurements
is limited by the precision of the used measurement equipment. Figure 4.4 shows
the lateral distance between the robot and the strap which, as explained above,
is localized by means of color information while standing still. Although the
distance is expected to stay constant, the detection results in a peak-to-peak am-
plitude of 1 cm. This amplitude arises from measurement noise from the ZED2i
camera.
The camera is also influenced by environmental influences such as varying light-
ing conditions and view angles that lead to changing RGB values of the points
belonging to the strap.
Second, the placement and geometry of the lashing strap limit the reliable mea-
surement of the lashing strap. Even if the strap is perfectly placed and fully
detected, as it has a width of 5 cm multiple lines that fit through the extracted
points can be found at different x-positions and varying slopes. While it was
aimed to place the strap at the center of the middle row, the placement can only
achieve a limited accuracy. The uneven surface formed by differently shaped
plants prevent the strap being perfectly straight. In addition, leaves covering
parts of the strap and shadows lead to parts of the strap not being fully de-
tectable.
Third, the system is evaluated mainly using one test field. Varying appearances
of the row structures and plant shapes on different fields or at various points in
time were not considered.
Finally, the resolution of the grid map generated from projecting the extracted
strap point cloud limits the accuracy of the localization of the strap. Here, a
pixel size of 1 cm was chosen.
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As the here investigated transportation platform doesn’t require a highly precise
navigation the used evaluation method is sufficient for evaluating in-field navi-
gation. Nonetheless, further experiments using more precise evaluation methods
are meaningful in the future to get more accurate evaluation results to further
improve the system and especially with regards to the future implementation of
tasks that demand higher precision.
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Figure 4.4: Lateral offset of the robot to the center row at Y = 0 m while standing
still.

4.3 Detection Results

The steering commands that are required for the autonomous navigation can only
be generated when the center row has been localized with respect to the robot’s
frame. The row detection is dependent on multiple factors such as the clustering
and the line detection. The center row can only be defined when at least either
both outer rows or the center row have been successfully detected.
All tested methods allowed the robot to follow the chosen track along the lashing
strap in about 75 s. Considering the length of the lashing strap of 12 m, the robot
reached a speed of around 0.16 m

s . While applying the window clustering method
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all three clusters and all lines could constantly be detected. No detection was
identified as a failure when the window clustering was applied in the chosen test
environment. When using the contour clustering method, the steering command
could not always be correctly generated. The algorithm detects if the offset
exceeds a maximum constant lateral distance of 30 cm to decide whether the
detected value is valid. If this threshold is exceeded the steering command will
be neglected. Given that a detection failure was only detected when applying
the contour clustering method, it is confirmed that the determination of the
lateral offset only depends on the cluster detection and is independent of the line
method. As can be seen in Table 4.1, frames were neglected in all line methods
when applying contour clustering. For one test run approximately 1100 frames
were generated by the camera resulting in an average number of 1.2 neglected
frames per 1000 processed frame.

Table 4.1: The number of detected center rows that resulted in a lateral offset
exceeding the maximum expected threshold only occurred while using
contour clustering. If this occurs the result is neglected.

Hough RANSAC Least Square Rectangle
3 5 1 4

The reliable clustering output provided by the window clustering permitted a con-
stantly successful line detection resulting in a failure rate of 0 neglected frames per
1000 processed frame. The cluster and line detection results for all line methods
for the contour method is listed in Table 4.2. Large vegetation gaps and weeds are
assumed to be the most common reason for non-detectable rows. Row clusters
can get merged with unrelated clusters belonging to weed or other rows. If the
total width is still within the accepted row width, the center line of the detected
cluster can lie outside the expected location and will then cause a detection fail-
ure. As the experimental environment did not include large vegetation gaps, the
false cluster or line detection are very likely to be caused by weed, measurement
errors and disturbances causing the robot to jerk.

Table 4.2: Number of failed cluster and line detection that were detected for the
contour clustering.

Object of Detection Hough RANSAC Least Square Rectangle
Center Cluster 3 0 1 2

Left Cluster 0 3 4 0
Right Cluster 2 3 4 0
Center Line 3 0 1 2

Left Line 0 3 4 0
Right Line 0 1 2 0
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4.3.1 Lateral Offset

In the field the robot moves along the rows at a constant speed while constantly
striving to minimize the lateral distance between its center and the middle crop
row. To successfully navigate along the track the lateral offset should not exceed
a maximum threshold to avoid plant damaging and to achieve efficient steering
which results in moving along straight tracks and avoiding wavy lines. This
can be examined by looking at the lateral offset between robot and center row
measured at the origin of the robot frame.
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Figure 4.5: Lateral offset of the robot to the center row while navigating along
the track using all approaches.

The results depicted in Figure 4.5 show a continuous oscillation and noise in
the signal. The noisy signal arises due to noisy camera measurements that
were already mentioned in Section 4.2. The oscillation is related to the motors
responding to the steering commands. The peak-to-peak amplitude for all line
detection methods is smaller than 10 cm which results in smooth navigation.
A maximum deviation of 9 cm was reached which stays within the maximally
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allowed bound of 26 cm. All large deviation exceeding the given threshold are
likely to be caused by sudden disturbances in the environment such as small
bumps or slipping. For all runs, the offset caused by the disturbances didn’t
cause failure or could be identified as false detection and was rejected. By
neglecting all outliers which, as mentioned before, was necessary when applying
contour clustering, shows that all methods resulted in the same performance
regarding the lateral offset. While the lateral distance stays in an acceptable
range the mean value is 4 cm. The chosen experimental track needs to be chosen
longer to investigate if the mean value of the lateral offset converges to 0. If that
is not the case, the reason for the remaining constant offset error needs to be
investigated as it is not desired.

0 10 20 30 40 50 60 70−15

−10

−5

0

5

10

Time in s

O
ffs

et
in

cm

Lateral offset for Reference Approach

Figure 4.6: The lateral offset of the robot to the center row while navigating
along the track using the reference approach.

The results for the lateral offset of the reference navigation approach are depicted
in Figure 4.6. At time stamp 43 s the offset reaches an absolute peak value of
13 cm. In terms of efficient steering, the reference approach performs worse as the
track reaches a peak-to-peak amplitude of 20 cm and the oscillation frequency is
higher than before. This can be explained by the higher processing rate.
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During the experiment the ZED2i camera provided an average publishing rate of
nearly 10 point clouds per second. The here presented approach only uses every
third point cloud to generate steering commands to reduce the processing time of
the navigation system. This is a reasonable approach for systems only operating
at low speeds. As a result, more than three steering commands are published
per second if the row detection succeeds for all selected frames. The reference
approach, on the contrary, uses all available point clouds and therefore achieves
a three times faster response time.

4.3.2 Robustness and General Performance
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Figure 4.7: The deviation from the ground truth data can be used as a measure-
ment for accuracy.

Figure 4.7 shows the deviation of the lateral distance measured 2 m in front of
the robot from the ground truth data. This distance which, as previously said,
is illustrated in Figure 4.3 is especially interesting for the evaluation of the ap-
proach as it is used to determine the value of the steering command. A constant
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offset could not be detected which shows that the constant offset error mentioned
before doesn’t arise from a systematic error in the system but comes from the
method itself. Looking at the deviation graph shows that the RANSAC, Rect-
angle and Least Square line detection methods resulted in only small deviation
of less than /pm10 cm. Only the Hough method shows significantly higher and
more frequently appearing deviations from the ground truth value. As the graph
does not provide a sufficient basis for a comparison analysis of all methods, the
error distribution of all measurements can be seen in Figure 4.8. It becomes
evident that all methods apart from the Hough line detection method result in
a Gaussian distribution. This can be observed for both clustering methods. The
standard deviation

σ =
√√√√ 1

n
·

n∑
i=1

(xi − x) (4.1)

is used to determine the dispersion of the estimated position of the robot with
respect to the center row which also includes the method’s precision. A small
value is desired as it indicates that the value tends to be close to the mean value x
of all estimated values. Here, the standard deviation with respect to the ground
truth value was calculated for all line methods apart from the Hough method
since its error distribution doesn’t result in a Gaussian distribution. The results
can be seen in Table 4.3.

Table 4.3: The standard deviation shows how much the estimated value is ex-
pected to deviate from the mean value.

Clustering Method RANSAC Least Square Rectangle
Contour Clustering 1.99 cm 3.95 cm 3.67 cm
Window Clustering 1.49 cm 1.54 cm 2.4 cm

The RANSAC method achieves the best performance especially when combined
with the window clustering method. It reached a standard deviation of 1.49 cm.
While the Least Square Method achieved a significantly higher standard devi-
ation of 3.95 cm for contour clustering, it attained a standard deviation of just
1.54 cm with window clustering. Thus, it can be concluded that the RANSAC
and Least Square method performed equally well when applied with window clus-
tering. The rectangle method achieved a higher standard deviation of 3.67 cm
and 2.4 cm for contour and window clustering respectively. Once again, a better
performance for window clustering was detected. As it was mentioned before,
the result can be strongly impacted by outliers as they occurred for the Least
Square and Rectangle method. It is assumed that they arise out of wrong cluster
detection and association due to weeds. Even though the standard deviation for
the Hough method wasn’t calculated, it can still be seen from Figure 4.8 that its
estimation are the most dispersed around the expected value.



44 4.3 Detection Results

−25 −20 −15 −10 −5 0 5 10 15 20 250

20

40

60

80

100

120

140

N
um

be
r

of
M

ea
su

re
m

en
ts

Error Distribution for Contour Clustering

RANSAC
Rectangle
Hough
Least Square

−25 −20 −15 −10 −5 0 5 10 15 20 250

20

40

60

80

100

120

140

Measurement in cm

N
um

be
r

of
M

ea
su

re
m

en
ts

Error Distribution for Window Clustering

RANSAC
Rectangle
Hough
Least Square

Figure 4.8: The distribution of the error is used to investigate the accuracy and
precision of the approach. It can be used to calculate the standard
deviation for each approach to get the dispersion of the detection
result.
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4.3.3 Computational Time

Comparing the clustering methods regarding computational time shows that the
window clustering method is more than four times more time consuming than
the clustering method using contours. The computationa time was measured
using the given hardware described in Chapter 2.3 that was used for the field
experiments. The average duration for the clustering step for one frame is
7.1 ms using contour clustering and 40.5 ms using window clustering. The
computational time of the window clustering method could potentially be
reduced by changing the size of the windows. For the experiments, 6 windows
were used to gain a highly accurate result. While the computational time was
sufficient to successfully navigate through the field, reducing the computational
time is needed to compete with the other clustering method and especially
when considering the development of an overall more complex system in the
future that is capable of further technical tasks consuming more computational
resource. When playing back the same ROS bagfile data using less numbers of
windows such as 5, 4 and 3 windows per row or reducing the window’s width
didn’t lead to a reduction of time consumption.

Table 4.4: Average duration for all tested line detection methods using recorded
data from the field experiment.

Hough RANSAC Least Square Rectangle
4.5 ms 27.2 ms 0.63 ms 0.88 ms

The duration for all line methods was evaluated when playing back data to get a
direct comparison using the same input data. The total duration values that are
listed in Table 4.4 might vary from the duration when running the experiment
on the field. The proportion between the measured average duration will still
be valid for the real-world application. As can be seen in Table 4.4, the line
detection method using the RANSAC algorithm took the longest with a duration
of 27.2 ms. The Hough line detection method only needs a sixth of this duration.
The best results in terms of computational time could be achieved using the Least
Square and Rectangle line detection as they required significantly less time.The
Rectangle method only required 0.88 ms which is a fifth of the time required
for the Hough computations. The Least Square method could achieve the best
results with the lowest computational times of 0.63 ms resulting in more than a
25 % decrease compared to the Rectangle method. Downsampling the data could
help to reduce the computational time for Hough and RANSAC line detection.
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4.3.4 Clustering Comparison

The real-world experiment shows that all approaches perform well on the chosen
field. Nonetheless, testing the algorithms on different and more challenging data
including higher weeds and larger gaps emphasize that the robustness of the
algorithm still needs to be improved.

(a) (b)

Figure 4.9: (a) The top of the fully grown plants are mowed after harvesting
season. The orange lashing strap is placed at the center of the mid-
dle row as a reference for the detected center line. (b) Differently
shaped and sized plants, gaps, weed and wrongly positioned straw-
berry plants make the row detection more difficult and are recorded
to test the approach’s performance in challenging environments.

Such challenging experimental environment can be seen in the images of
Figure 4.9. The data was recorded from a strawberry field after harvesting
season. It contains overgrown inter-row tracks due to strawberry shoots and
weeds, large gaps in the rows and damaged plants. While the large, bushy plants
are characteristic for harvest time the structure of the field can be expected to
be better visible during harvest season. As the plants were mowed and pushed
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down it was challenging to extract the rows separately when using the contour
clustering. Nevertheless, the row structure is still apparent and visible in the
recorded point cloud data due to the mounds.

(a) (b)

(c) (d)

Figure 4.10: (a) The windows of the window clustering method have a pre-defined
size and lateral offset. (c) Therefore, overgrown tracks are fremoved
from the white pixels presenting the three guiding crop rows. (b)
The contour clustering defines all white pixel clusters enclosed by
one contour line (red) as belonging to the same cluster. If plant
material or similar objects occur in the inter-row space the algorithm
tends to merge clusters of multiple rows as it occured in (d) for both
outer rows.
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Challenging frames with large weeds in between the rows as it is depicted in
Figure 4.10 were chosen to compare the clustering methods. While the contour
clustering method associates all clusters that are enclosed by one contour to the
same crop row, the window clustering method is more reliable in fields strongly
overgrown with weeds. In Figure 4.10(a) the window clustering places the search
window along the center of the rows leading to cropping off the plant material
at the sides of the rows and in the inter-row space to obtain a cleaner cluster
detection of the row structure. The contour clustering method depicted in Fig-
ure 4.10(b) fails in detecting the outer rows correctly. The rows get merged with
their neighboring rows and weeds located further outwards. The result of the
contour detection in Figure 4.10(b) shows that the outer rows were wrongly iden-
tified. In the here presented case, the steering commands can still be generated
from the successful detection of the center crop row. If the center crop row gets
merged with additional plant material or even further crop rows, the detection
will fail. The Large gap didn’t affect the navigation approach as the consistent
mound structure always delivered a sufficient height for row detection. Due to
time constraints, the clustering methods could not be compared quantitatively.

4.3.5 Intel RealSense Camera

The code was developed using the ZED2i camera as it provides a reliable
output even in challenging outdoor environments. This makes it possible to
more focus on the methods without being restricted by insufficient quality of
sensor data. In the same experimental environment, the algorithm was run on
the Intel RealSense Depth camera that also uses stereo vision to obtain depth
information. This is done, as previously said, to also test less expensive sensors
and to check if similar results can be attained. The recordings were taken on the
same experimental track using the RANSAC line method and contour clustering
for autonomous steering. The detailed evaluation for all methods using the Intel
RealSense camera exceeds the scope of this project. Nonetheless, first results
were collected to check if further testing is expected to pay off. The failure
rate is 0, 56 neglected frames per 1000 processed frame which are less failures
compared to when using the ZED2i camera.
Furthermore, Figure 4.11 shows the lateral offset between the robot and the
center row. The run resulted in a peak-to-peak amplitude of 0.21 cm. This
indicates a smoother steering as it was detected when using the ZED2i camera
which was discussed in Section 4.3.1.

As the results are based on only one test run using the Intel RealSense camera,
the findings cannot be used for a meaningful evaluation. In spite of this, the
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promising results generally indicate the potential of the application of low-cost
sensors.

20 30 40 50 60 70 80 900

5

10

15

20

25

Time in s

O
ffs

et
in

cm
Lateral offset using the Intel RealSense Camera

Figure 4.11: Lateral offset of the robot to the center row while navigating along
the track using the Intel RealSense camera.





Chapter 5

Conclusion

In this paper, a novel localization approach for autonomous navigation in straw-
berry fields was presented. The aim was to establish a robust and low-cost mo-
bile transportation platform that autonomously navigates along the crop rows
to carry filled boxes of harvested strawberries. A mapping approach was chosen
as it is well suited for further development enabling future tasks. It can easily
be modified in order to build a more detailed representation of the immediate
environment by inserting additional features of the surroundings. The map is
generated using spatial information contained in point cloud data which is given
by the ZED2i stereo vision camera as this is the most promising sensor data for
crop row detection.
It was demonstrated experimentally that all evaluated approaches are suitable
for autonomous in-field navigation. In all conducted experiments, the lateral dis-
tance between robot and center crop row was less than 10 cm indicating a smooth
movement and an accurate navigation. While the reference navigation resulted
in a curvier navigation path, the novel approach could achieve a much smoother
motion along an almost straight path. The weaker performance of the reference
method is due to a higher frequency of processed frames resulting from a lower
processing time. A smoother way of driving could be achieved by applying a
noise filter which reduces the sensitivity of the approach.
In addition, the accuracy and dispersion of all methods was investigated using the
standard deviation of the estimated robot’s position. The results could confirm
that window clustering is the preferred clustering approach. A small standard
deviation for the window clustering could be especially achieved by the RANSAC
and Least Square method. Only the estimated values of the Hough method didn’t
result in a Gaussian distribution. In comparison, the Hough method reached the
highest dispersion of detection results. A distinct accumulation of measurement
results at the mean value could not be detected and, moreover, it had the most
frequently occurring large deviations exceeding 10 cm.
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When diving deeper into the experimental results, it becomes apparent that the
window clustering method achieves significantly more robust crop row detection.
This could especially be confirmed for fields with a large part of the inter-row
space covered by vegetation. While the contour clustering allowed a success-
ful navigation along the test track without interruptions, the detection of a few
frames failed due to vegetation appearing between rows. The window clustering
clearly achieves a more robust result as its cluster detection never failed but comes
at a considerably higher computational cost that is nearly six times larger than
the one measured for contour clustering. All line detection methods, except the
Hough method, didn’t result in significant performance differences. Nonetheless,
comparing them with respect to their required computational time led to clear
differences. The Rectangle and Least Square line detection methods required by
far the shortest computational time making them more favorable.
Assuming that the source code for the window clustering method can be further
improve with regards to computational time and considering all examined evalua-
tion criteria, it can be concluded that window clustering is the preferred method.
Combining this clustering approach with the fastest line detection based on the
Least Square method results in a robust navigation approach that enables the
robot to successfully navigate through a strawberry field containing fully grown
plants placed on straight mound structure with equidistant rows. The presented
approach could even be used with lower-cost sensors such as the Intel RealSense
Depth camera replacing the currently used ZED2i stereo camera aiming for an
overall inexpensive transportation platform. Further testing, however, is required
to achieve a reliable evaluation and a quantitative comparison between using the
different cameras to build a lower-cost transportation platform.
This project has faced up the challenged of building a field robot only using low-
cost on-board sensor independent of field maps or GPS markers. It was shown
that, while the robot is only able to acquire information of its direct environment,
it is still able to robustly and smoothly follow the crop rows of a strawberry fields
at a low speed. Regarding all findings, this project contributes greatly to the
field of mobile field robots as it developed a robust navigation system that car-
ries a high potential for the considered application. The approach, at the same
time, represents a solid foundation for the continual development as the current
functional status can easily be expanded by adding new software components.
Nonetheless, it is important to note the limitations of the used evaluation method
that were indicated in detail in Section 4.2.
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Outlook

While the project resulted in a successful implementation of a navigation system,
in the following discussion various ideas are proposed that can be taken into
consideration for future studies aiming to integrate the navigation system in an
embedded platform. First, improvement measures are discussed that can be
implemented to improve the current state of development especially with respect
to robustness. Following this, aspects are given that are mandatory to employ
the robot in the field. Finally, ideas are suggested with the objective of reaching
more advanced future development levels.

For the purpose of increasing the robustness, additional sensors, such as a
back-camera, are useful as a validation of the current detection results and in
case the front camera’s field of view is obstructed. Further real-world experi-
ments are needed including varying environmental conditions, field structures
throughout harvesting season and fields at different locations. Small changes
can be done such as trying out different ROI dimensions, voxel sizes and various
map resolutions. The currently selected point that is used to generate steering
commands, located 2 m in front of the robot, can be moved to another position
to test its impact on the performance. Additional features such as the angular
deviation between the field frame and automated frame alignment can be
introduced aiming for a safer and more robust performance enabling the work
alongside humans.
The tests were only conducted on planar fields with constant transformation
parameters of the point cloud. IMU data or planar segmentation can be used
in the future to automatically adjust the transformation, especially the rotation
parameters of the point cloud to always correctly align the camera and ground
plane. During the development of the here presented approach a plane detection
method was applied using a simple plane model segmentation to detect the
ground plane and for dynamic frame alignment. The Kalman filter was used to
stabilize the measurements. Detecting the normal vector of the field’s ground
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plane did not work sufficiently well, because the point cloud data included too
much noise in form of vegetation covering the ground and unevenness. The
measured part of the field didn’t contain enough information to repetitively
generate a reliable plane estimation. Achieving a successful plane alignment
would however be highly beneficial to compensate for unevenness and to allow
the navigation in hilly fields.
Generally, the approach was developed mainly focusing on the robustness of
the navigation system while the computational time consumption had lower
priority. Measurements to reduce the computational time, however, need to be
considered especially when applying time-intense approaches such as the window
clustering method. This can be done by code optimization, ROI reduction or
downsampling in the sense of reducing the number of pixels which results from
the resolution of the grid map.
The evaluation method needs to be improved to reduce its limitations that were
mentioned in 4.2. Using alternative sensors and finding a way to get a more
precise position of the ground truth reference is key to get more accurate ground
truth data. Instead of using just one strap, multiple markers can be placed in
the field to get a more accurate identification of the reference row position.
The presented robotic transportation platform can only be deployed in its work
environment closely collaborating with human workers if it fulfils stringent
safety requirements. To achieve such a target the robustness needs to be further
increased and object detection and avoidance needs to be implemented. Avoiding
collisions with obstacles such as baskets and workers requires additional sensors
not only in the front but also at the side and back since the robot can be loaded
from all sides. As the robot is built to follow the pickers, humans, however, will
always be in the current camera’s field of view and would prevent a successful
detection of the center row’s position. This needs to be considered in building
the final navigation system by combining obstacle and row detection.
Future work addressing more challenging navigation outside the field can focus
on Simultaneous Localization and Mapping (SLAM) which is a method for
localization of mobile robots in an unknown environment. The robot constantly
generates a map, called occupancy map, of its environment and its relative
position to the detected surroundings. SLAM can be used to detect obstacles
but also target positions and field structures. In the considered application,
it is especially useful as soon as the robot needs to leave the structured field
environment when for example switching between crop rows or navigating to a
drop-off point for the picked strawberries. The generated grid map in the here
presented approach can serve as a basis for the advanced mapping and could be
incorporated in the new occupancy map.
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