

ANT ROBOTICS WAYPOINT NAVIGATION

Author Roman Hanselmann, Simon Steigmeier, Urban Willi
Coach Manuel Schlegel, (Christian Bermes)

4. JANUAR 2023
FHGR

Abstract
Definition of Task This project aims to develop a module for autonomous waypoint navigation

and mapping. It will enhance the autonomy of an existing agricultural robot,
belonging to Ant Robotics Gmbh.

Goal The module’s task is to localise the robot’s own position on a given map.
Outside of crop fields, it should automatically find a path to another selected
position and autonomous follow this path. The collected data will create a
map, which will be saved locally.
Since the robot will work in the same environment as humans, it is important
that the robot won’t crash with humans.

Approach Different possible solutions were collected and discussed with the client until
the most suitable possible solution was found. To prevent unnecessary work
and problems, the internet was searched to find possible open source
solution that can be partially used in this project. To test the module, a virtual
world was created to simulate a more realistic environment.

Essential outcome In the process of this project a ROS module was created, that allows the
client’s agriculture robot to plan a path to its destination and drive there
autonomously. To test the created software, a virtual world was created to
simulate the robot.

Keywords Waypoint Navigation, Localisation, ROS

Record of changes
Version Reason for change Initials Date
1.0 Creation of this document RH 19.12.2022
1.1 Adding new .py description SS 08.01.2023

Table of Contents
Abstract ... 1

Record of changes ... 1

Abbreviation .. 3

1. Introduction ... 3

Context .. 3

Robot Description .. 3

Assignment .. 3

Approach ... 3

2. Clarification of the task ... 4

Setting ... 4

Specifications ... 5

System boundaries .. 6

Preliminary work ... 6

Project plan ... 7

3. State of the art .. 7

Mapping .. 7

Localisation .. 9

Path smoothing ... 9

Object detection .. 9

Path finding ... 10

4. Concept ... 12

Decision summary ... 12

Concept description .. 12

5. Realisation ... 13

Robot and Software Description ... 13

6. Testing ... 23

Virtual environment .. 23

How good is the outcome? ... 27

7. Conclusion ... 28

8. Further development .. 28

9. Register .. 29

Figures ... 29

Tables .. 30

Attachment .. 30

Abbreviation
ROS Robot Operating System
IMU Inertial measurement unit
LiDAR Light detection and ranging
GPS Global position system
GPS - WGS84-format Position in -> longitude & latitude:

(8.89999984, 49.899999963)
GPS - UTM-format Position in zones:

 z: 32
 l: U
 x: 492818.42723554146
 y: 5527517.131716844

1. Introduction
Context
The Client of this project is Ant Robotics. Ant Robotics is a Start-up from Germany that develops and
produces support robots for agriculture.

Robot Description
The robots task is to support workers during the harvest of fruits and vegetables, reducing non-
productive time spent on transporting crates. It will slowly follows the workers and carry their crates.

Assignment
In this project, an additional software module for this agriculture support robot has to be developed.
The module’s purpose is to make the robot more autonomous. With this module, the robot should be
able to autonomous drive to a selected destination, plan a short path to the destination and avoid
obstacles on its way.

Approach
Once the details of the project were clear, it has been researched about the current state of the art of
localisation and path finding. After a few possible solutions were found, it has been decided on which
one to use. With this information the development of the module could be started. To test the module,
a small virtual world has been created, where a virtual model of the robot could drive around.

2. Clarification of the task
In this chapter, the task and the already existing robot from Ant Robotics will be described in more
details.

Setting
The ROS module that will be developed during this project, is to make an agriculture support robot
more autonomous. The robot’s work environment is on fields with crop rows, where human workers
pick vegetables or similar products. Normally the human workers have to walk to the end of the field
once their crate is full to get a new empty one. Since this is unproductive time, this robot was
developed to slowly follow the human workers, carry their crates and enable them to work more
productive. Now there is still a human worker needed to manually drive the robot to the next crop row
or to an unloading station once it’s fully loaded. The module that will be developed during this project
shall give enough autonomy to the robot, that it can do these tasks on its own.

Figure 1: Crop rows with robot

https://www.youtube.com/watch?v=0zSuqwCQMwk

Specifications
Following are all the must specifications listed. For all specifications, see
“Specification_book_signed.pdf” in the attachment.

Waypoints Waypoints define the goal for path planning. One goal at a time is
defined by a module outside the system boundaries. Waypoints are
defined as a coordinate in the world frame.

Position marker Starting position and important markers for the return journey
(transition field - road) can be saved on request.

Path planning The robot can plan its movement from the current position to the
next waypoint.

Driving control A control algorithm regulates the execution of the planned path.
Obstacle avoidance On an encounter with an obstacle, alternative paths can be calculated

or the robot is stopped if no safe alternatives are found.
Disabling alternative paths Obstacle avoidance can be turned off, for example inside crop rows.

This is a safeguard to prevent damage to plants.
Mapping A 2D map of fixed size (determined in runtime by another module) is

created and saved. It receives obstacle data and crop row positions to
add to the map.

Localisation The robot can localise itself in the map and with the help of
positioning data (for example GPS).

Documentation The contractors will write a report about the project and hand it over
at the end of the project. In addition a presentation will be held and
a short video is produced showcasing the project functionality.

Legal requirement The client takes care of the legal requirements. Only legal
requirement the contractors have to keep in mind, is the robots
current speed limit of 5km/h.

Open source code Open source code may be used in the project when it makes sense,
but usage of any such component must be green-lit by Ant Robotics
first.

Modularity The software project shall be modular in its nature, such that it can
use the data provided to it by other ROS packages independent of the
data source. It will be activated and commanded by another module.

Simulation testing The project is software based and shall work on the simulation
without the robot or additional hardware.

Programming language The project should be developed with C++. Alternatively, python can
be used for development.

Framework The module is based on ROS1 Noetic.
Calculations All calculations and actions are done and saved locally on board.

Table 1: Specifications

System boundaries
In the following illustration you can see the boundary of the already existing part from Ant Robotics
(green) and the boundary of the task (red).

Figure 2: System boundaries

Preliminary work
The client already built a working robot before this project started. The robot has following sensors on
board:

- Wheel encoder
- IMU
- 3D camera
- 2D LiDAR

This robot is already able to do certain tasks on its own (also see 2. Clarification of the task).

For easier testing, the client also created a virtual model of the robot to use in a virtual environment
and made it accessible for this project.

The client also gave many useful tips regarding programming ROS.

Figure 3: Virtual robot model

Project plan
The roadmap for the project can be found in the “Project_status_v4.pdf” file in the attachments. The
roadmap shows what task is planned in which week of the year. In week 51, a one-week buffer was
added for holidays and to compensate eventual delays.

3. State of the art
In this chapter, the results of the state of the art research will be shown. Different possible solutions
were found and later it was agreed on one concept. For more detailed information about the concept
see “Concept_desicion.pdf” in the attachments.

Mapping
For mapping, two possible solutions were found:

- 2D grid map

Figure 4: 2D grid map

https://risc.readthedocs.io/_images/ros_map.jpg

- 3D grid map

Figure 5: 3D grid map

https://wiki.ros.org/ccny_rgbd/keyframe_mapper?action=AttachFile&do=get&target=3rooms_oct
omap.png

Since the robot is big and is supposed to work on a more or less flat field, there is no real benefit of
having a third dimension. On top of that, a 3D grid map needs a lot more storage space especially on
large fields. With this information, it was decided to use a 2D grid map.

Localisation
For localisation, two possible solutions were found:

- GPS only
- GPS and IMU data

For localisation on an open field, some kind of GPS is the most obvious solution. But soon the question
came up if GPS alone is robust enough for autonomous driving and what would happen if the robot
loses the GPS signal for a moment. Luckily the robot already has a IMU integrated. The IMU itself is
very inaccurate for autonomous driving, especially on an uneven underground. But it should be good
enough to just keep its path until the robot gets the GPS signal again. That’s why it was decided to use
GPS and IMU data.

Path smoothing
For path smoothing, two possible solutions were found:

- Path smoothing algorithm + PID controller
- Pure pursuit controller + local planer (real time path adaptation)

Because the robot hasn’t a narrow turning radius, a path smoothing element is needed. Both of the
two found possible solutions would have a similar result. But since the first solution needs more steps
to get a similar result, it was decided to use the Pure pursuit controller.

Object detection
For object detection, two possible solutions were found:

- 2D LiDAR only
- 2D LiDAR + 3D camera

The robot has currently mounted a 3D camera, on its top facing down, to detect crop rows and
obstacles in front of the robot. Because of its small field of view, it was already decided beforehand to
add a 2D LiDAR and increase its sight with that. The problem that occurred here is, that the 2D LiDAR
can’t be mounted to low, because plants might interfere with the sensor. But because of that it won’t
be able to detect the crop rows and crates. That’s why it is necessary to combine these two sensors.
To do so, it is necessary to transform the 3D camera data to a 2D point cloud and merge it together
with the 2D LiDAR point cloud.

Because the client already has a ROS module that reads the 3D camera data, it was decided that the
client will integrate the 2D LiDAR into the already existing module. The module, which will be
developed in this project, will receive the already transformed 2D point clouds from the existing
module.

Path finding
For path finding, two possible solutions were found:

- Dijkstra algorithm
- A* algorithm

Figure 6: Different path finding algorithms - open area

Figure 7: Different path finding algorithms – labyrinth

https://www.youtube.com/watch?v=aW9kZcJx64o

The Depth First Search and the Broad First Search algorithms are old algorithms that are either slow or
won’t provide the shortest path.

A* is the most common path finding algorithm nowadays. It finds the shortest path (in rare cases it’s
not the very shortest but still a very short path) and it’s also very fast to do so.

The Dijkstra algorithm is mainly used when there are areas on your map that need to be weighted. For
example, when a specific area is dangerous to drive through and should be avoided or when a specific
area is easier to drive through than other parts of the map. The Dijkstra algorithm is also able to plan
a path through multiple destinations instead of just one.

The robot however will work on a map that can be unknown previously. Therefore, weightings would
have to be added manually once the map is discovered or the robot would have to add them ongoing
while driving around the map. Adding weightings manually is not a good solution for this project since
the customers who will use the robot, can’t be expected to any knowledge about robots. This could
bother the customers because additional work is required and could lead to problems caused by
incorrectly operating the robot. Furthermore adding weightings once the map is fully discovered
probably means that the work is already done anyways.

Since it’s also not necessary to plan a path for multiple destinations at once, it was decided to use the
A* algorithm.

4. Concept
In this chapter is a short summary of the decisions that were made together with the clients. Followed
by a description of the concept for this project.

Decision summary

Problem Solution Reason for the decision
Mapping 2D grid map A 2D grid map was chosen because it’s

enough for this project and there’s no
benefit of adding a third dimension.

Localisation GPS and IMU The GPS data are used to localise the robot
and the IMU data will be used to calculate
the current position, in case the GPS signal
is lost.

Path finding A* algorithm The A* algorithm was chosen because it is
the fastest algorithm up to date and also
delivers the shortest path.

Path
smoothing

Pure pursuit controller + local planer
(real time path adaptation)

This solution was chosen because the other
possible solution might have caused more
work for a similar result.

Object
detection

2D Point cloud multiple sources There are two sensors for object detection
available on the robot. A 2D LiDAR and a 3D
camera. The 2D LiDAR can’t be mounted to
low, because plants on the ground might
interfere with it. To still detect obstacles on
the ground the data from the 3D camera are
needed.
The data will be transformed by the client
and isn’t part of this project. For this project
the finished 2D point clouds will be
available.

Table 2: Decision summary

Concept description
The robot is supposed to start in an unknown environment. To be able to work in an unknown
environment, it got 3D camera and a 2D LiDAR sensor to sense obstacles in front of it. The robot already
transforms these data to 2D point clouds and makes them available for it’s modules. These data can
be used to continuously create a 2D grid map. The map data can be saved locally.

The module should enable the robot to autonomously drive to a selected destination. To do that, a
path from the current location of the robot to its destination is needed. To accomplish that, the A*
algorithm can be used to find the shortest path to its destination. Because of the robot’s turning radius,
the path has to be smoothed with the pure pursuit controller.

In case that new obstacles appear while the robot drives through an unknown area or in case the
already discovered area changes, the module needs a local planer to adjust its path if necessary.

5. Realisation
Robot and Software Description

Physical robot
The robot is an agricultural vehicle used for transporting crates. The software module shall not depend
heavily on the physical properties of the robot, so that it can be used on different robots. Physical
constraints that were taken in account is the non-holomorphic nature, the robot has a minimum
turning radius.

Sensors available on the robot
The sensors which are mounted or will be mounted to the robot are the input sources for our system
[figure 8]. The implementation of the sensors into the ROS environment is outside the system
boundaries of our module and is done by Ant Robotics. For the development of our module, all sensors
were simulated in ROS.

Figure 8: Sensors available on the robot

These following sensors were included:

• RTK-GPS
For absolute positioning information. An RTK-GPS has a ground station near the operating
robot, which improves accuracy.

• 3D camera
The 3d camera provides colour images and a 3D point cloud matching each pixel. It may be used
to identify crates lying on the ground. The image processing and 3D point cloud analysis is not
part of our module. The input to the module from the camera was modelled as a second lidar
scanner close to ground level.

• 2D lidar scanner
Lidar scanners produce distance measurements on a (usually) horizontal plane around them.
The lidar scanner is mounted in the front of the robot and does not cover the rear. The data
produced is used for obstacle avoidance and for mapping [figure 9].

• Inertial Measurement Unit
The IMU produces acceleration data and turning velocities of itself. These can be used for
position estimation via integration.

• Wheel encoders
The wheel encoders measure how much each wheel has turned. With this data, odometry can
be calculated, which is a position estimation based on the revolutions of the left and right
wheel and the wheel diameter.

Figure 9: The Lidar in action

System architecture of ROS
ROS is a modular framework. Several open-source packages were used, as well as the standard
installation of ROS of course. Not all packages contained in ROS can be mentioned here, a selection of
the high-level packages was made [figure 10]. A full list of all ROS packages is in the attachments.

Figure 10: Graphic of the Ros Architecture

ROS provides a framework for information exchange, between different programs called nodes.
Information is exchanged on channels called topics, to which any given node can subscribe (listen to)
or publish onto. A publication is called a message which can contain different standardised
information, for example position, time or error messages.

The software will be presented following the information flow starting from the sensors and ending
with the control algorithms and outputs of the system.

GPS transformation
The GPS data needs to be transformed from the global WGS84-format (latitude and longitude) to the
coordinate system of the robot. A node from the open-source robot_localization package is run for
this purpose.

Sensor Fusion

Figure 11: Local State Estimation

To achieve a more reliable result, the robot averages all information that is available and outputs a
probabilistic position estimation. For the calculations an extended Kalman filter was used. The
robot_localization package available as open-source is an implementation of such an extended kalman
filter and was used in this module. Two position estimations are calculated.

The first node, called the local ekf node [figure 11], fuses the odometry data and the imu data. Both
sources are continuous, and the result is a continuous position estimation. However, the error
accumulates with time and makes the estimation drift. This is due to the relative nature of the sensor
data, both the IMU and the wheel encoders only measure changes in position.

The second node is called the global ekf node and tries to remedy the drift by integrating the absolute
GPS data [figure 12].

Figure 12: Global State Estimation:

It fuses the GPS data with the same inputs as the first node, the odometry and IMU data. This time,
the output is no longer continuous as the GPS data can jump from one measurement to the next. This

can be detrimental for map building and matching scans, which is the reason a node with only
continuous data is kept in parallel.

Physical robot model and frames
The CAD model and its setup in Gazebo, the simulation engine of ROS, was provided by the company
[figure 13].

Figure 13: CAD robot model and the different frames

Before diving into the mapping and localization, it makes sense to take a step back and use the physical
model of the robot as the example for introducing frames.

The heart of the simulated robot is the base_link. This is the reference piece for all parts mounted to
the robot and it moves with the robot. Wheels, sensors and so on are all defined in their position in
reference to the base_link.

The base_link is called a reference frame. Analog to the base_link, there exists a frame (coordinate
system) for the odometry and a third for the map. The odometry frame describes the location of the
robot in relation to its start point. The map coordinate system should be fixed in relation to the real
world and describes the absolute position of the robot.

The transformation between different frames can either be static or dynamic. A static transformation
describes the position of the Lidar sensor in relation to the base_link, it never changes. A dynamic
transformation describes the position of the robot in the map frame.

Localization
The heart of the localization process is the open-source gmapping package. It takes as input the fused
odometry data from the global ekf node and the laser scans from the lidar. Once integrated, it will also
take into account the data from the 3d camera, transformed into planar laser scan message. It tries to
transform each incoming scan into the odometry frame and match it to the already existing map data.
It outputs the estimated transformation from the odometry frame to the world frame, as well as
continually updating the map it is constructing. On this map it can also clear obstacles that are no
longer in place [figure 14]

Figure 14: The static MAP

The constructed map can be saved and later reloaded with the help of the open-source map_server
node. If the robot is driving in an already known map (without updating it), the open-source amcl node
is used, which implements an adaptive Monte Carlo localization approach.

Navigation
The Navigation is based on the open source navigation package. It creates a global [figure 16]. and a
local cost map [figure 15]. For the global cost map, an existing map that is loaded can be used as the
basis. The cost map is where the robot keeps track of obstacles and they are used for path planning.
To ensure that obstacles are cleared when navigating, an inflation layer is applied to the cost map to
increase the size of all obstacles before applying the path finding algorithm.

Figure 15: Local Cost map

The global cost map is updated more slowly than the smaller local cost map. The global cost map spans
the whole known map and is used for the global path planning to the navigation goal. In that way,
known obstacles can be avoided even if they are far away.

The local cost map is smaller and serves as the basis for the local path planner. It reacts more quickly
and also takes into account the physical possibilities of the robot, such as the minimum turning radius.
For the local path planner, teb_local_planner was chosen as it supports non-holomorphic robots with
Ackermann drive and also supports dynamic obstacle input from a separate node.

The navigation node sends a message with linear and angular speed to the external ROS node
controlling the motor drivers.

Figure 16: Global cost map

The Human Machine Interface
To get in touch with the robot we have written a Python file as a Human-Machine-Interface. This allows
us to get information from the robot and also send some commands to the robot. In the next few
sections, we will give you a little overview of the structure and sub functions from the Python file.

Note, if you are interested in more details check the attachment or the README.md in the
fhgr_waypoints folder.

Main()
In the [Figure 17] you see the main menu routine.
At the beginning, the program creates the Start
point, in order to do that, the current global
position, the robots orientation and the current
time will be saved as a dictionary. If a Trailer point
is available he will also be saved in a dictionary. In
case that the Trailer point is not available, he will
be set equal to the Start point. After creating
those dictionaries they will be saved in a .json file.

 You can choose between several options which
are displayed to a command prompt, like:

- Save the current positon
- Show all saved waypoints
- Move to a user given goal
- Or delete a waypoint entry

Saving
If you want to save the current robot position, you
can run the saving_curent_waypoint function,
which is explained in the [figure 18].

Therefore, the program will get the x- and y-GPS-
Coordinates and the robots orientation from ROS.
This information and the current timestamp will be
saved in a dictionary. The whole dictionary gets
saved in a .json-file. And the main() menu will be
displayed again

Figure 17: The main() function

Figure 18: Saving current waypoint

Show saved waypoints
The [figure 19] get an overview of the three different
output methods of the saved waypoints.

You can choose between:

- Two different numeric console outputs,
which are showed in the [figure 19]

- Or one plot output.

Figure 19: Show all saved waypoints

Figure 20: Move to function

The information of the waypoints is stored in the .json file. If you choose the plot output, it will display
the waypoints with the relative distance to the start-point by default. If you are interested in the global
position of the waypoints, you can also do that, and you will see the waypoints with the latitude and
longitude values.

Move
To move the robot, you can have a look at the [figure 20]. There you
have three options:

- You can let the robot move to his Start point
- Move to the Trailer
- Or give him your own x- and y-coordinates and an orientation

If you want to let the robot move to user-given-coordinates you
have the choice between relative or absolute coordinates. The
relative coordinates are relative to the robots start-point and the
absolute coordinates are written in latitude and longitude. The
orientation is sent with Euler-angle in degrees around the z-axis (0
+- 180)

Delete
In order to delete a waypoint entry, you can call the function
delete() in [figure 21]

The program gets all saved waypoints from the .json file and prints
them to the screen. You can now easily choose the number of the
waypoint you would like to delete.

6. Testing
In this chapter the testing process and the virtual environment are described.

Virtual environment
One of the specifications for this project is that this project is software based and can be tested in a
simulation without the real robot or additional hardware. See “Specification_book_signed.pdf” in the
attachment for more details about this specification.

The client already created a virtual model of the robot and made it accessible for this project. But to
actually be able to test the module with the virtual model, it was necessary to create a small virtual
world that contains objects, similar to what the real robot would encounter.

At first a minimalistic world was created to resemble small strawberry field and a place to unload the
crates. This world was created to keep the processing power and the loading time low for easier
development.

Figure 21: Delete an entry

Figure 22: Minimalistic field

1. Minimalistic strawberry field
2. Unloading place

Based on this empty world, another world was created. This world contains parts of possible
environments.

3. Place to unload creates
4. Moving object (simulating a human slowly walking around the blue area)
5. Wide crop rows (wide enough for the robot to drive between the rows)
6. Narrow crop rows (narrow enough for the robot to drive with the rows between its wheels)
7. Crates (randomly placed crates that might be an obstacle on a real field)
8. Tree rows (trees could be an obstacle on a real field)
9. Indoor rows (with and without additional light sources)

Figure 23: Filled field

For testing our project outcome, we oriented ourselves on the specification book. The short outcome
is listed in [table 3] listed in short as follows:

Nr Status Keyword Description
1 pass

Waypoints Waypoints define the goal for path planning. One

goal at a time is defined by a module outside the
system boundaries. Waypoints are defined as a
coordinate in the world frame.

2 pass Position marker Starting position and important markers for the
return journey (transition field - road) can be saved
on request.

3 pass Path planning The robot can plan its movement from the current
position to the next waypoint.

4 pass Driving control A control algorithm regulates the execution of the
planned path.

5 pass Obstacle avoidance On an encounter with an obstacle, alternative paths
can be calculated or the robot is stopped if no safe
alternatives are found.

6 pass

Disabling alternative paths Obstacle avoidance can be turned off, for example
inside crop rows. This is a safeguard to prevent
damage to plants.

7 pass Mapping A 2D map of fixed size (determined in runtime by
another module) is created and saved. It receives
obstacle data and crop row positions to add to the
map.

8 (pass) Localization The robot can localize itself in the map and with the
help of positioning data (for example GPS).

9 pass Documentation The contractors will write a report about the project
and hand it over at the end of the project. In
addition a presentation will be held and a short
video is produced showcasing the project
functionality.

10 pass Legal requirement The client takes care of the legal requirements. Only
legal requirement the contractors have to keep in
mind, is the robots current speed limit of 5km/h.

11 pass Open source code Open source code may be used in the project when
it makes sense, but usage of any such component
must be green-lit by Ant Robotics first.

12 pass Modularity The software project shall be modular in its nature,
such that it can use the data provided to it by other
ROS packages independent of the data source. It
will be activated and commanded by another
module.

13 partial Simulation testing The project is software based and shall work on the
simulation without the robot or additional
hardware.

14 pass Programming language The project should be developed with C++.
Alternatively, python can be used for development.

15 pass Framework The module is based on ROS1 Noetic.
16 pass Calculations All calculations and actions are done and saved

locally on board.
Table 3: Short listed outcome

The [table 4] shows the testing documentation with explanations:

Nr Status Keyword Description
1 pass

Waypoints With the Python file as Human machine interface we can

load defined waypoints from a .json file and save them.
Sending waypoint goals is also possible

2 pass Position marker This is done with the Python file with the ‘Saving Waypoint’
function

3 pass Path planning For this we have a local and global planning algorithms from
a Ros package

4 pass Driving control The Ros package ‘teb_local_planer’ takes this task, for fine
tuning there is a handy simulation where you can put
obstacles in the calculated way of the robot and see, how
he will change his path to the goal.

5 pass Obstacle avoidance Therefor we simulated a Lidar, which is able to detect
incoming obstacles. Afterwards the local- and global-
planning algorithms from a Ros package take over to
calculate the way around the obstacle

6 pass

Disabling
alternative paths

During the crop rows the Ant Robotics algorithm taking over
the steering, our package is then reduced to map-only-
mode

7 pass Mapping This task is done by the Ros module map-server. To save the
created world a shell-command is necessary

8 (pass) Localization With the ‘robot_localization’ package we were able to fuse
the Odometry-, IMU- and GPS-data. But it’s buggy

9 pass Documentation This is achieved while you are reading
10 pass Legal requirement -
11 pass Open source code Done by using Ros packages and write other code by our self
12 pass Modularity To achieve this we created our own Ros package. The

Python file is ready to take some other data for localization
13 partial Simulation testing Due to the fact, that our robot is not able to move properly

the subject testing could not been executed.
14 pass Programming

language
For the human machine interface, we decide to write it in
Python. It makes the plotting easier and also the
understanding of the code itself. Additionally its not a time
critical task

15 pass Framework Only ROS 1 noetic in use
16 pass Calculations All calculations and actions are done and saved locally on

board.
Table 4: Outcome with explanations

For testing we had multiple runs in the simulation where we could see if the implemented packages
and functions run properly. If not, there were the option to fine tune the parameters. Also, the
different functions and requirements flow into each other. So, you can let the robot move to a point
where under the hood the path planning, the map server, the lidar and the localization algorithms is
running together.

As you can see, the testing in isolated conditions was mostly successful. BUT we had a major challenge
to deal with, which is the fact, that our robot is not able to move properly. Unfortunately, we were
running out of time, and we were faced to finish the programming or implementation of the Ros

packages and start to write the documentary and create the Movie. There for we were not able to
write a good and reproducible testing routine.

Another thing to point out is the enormous computing power that the simulation needs. The fans of
our Laptops where going insane but the output was quite poor. So we could not really load the self-
made-real-looking-world and let the robot explore in it. The simulation was quite jerky.

How good is the outcome?
The table below [table 5] shows on the left colourful how the project outcome works. In the Status cell
you will see if the outcome is stable or not.

 Status Keyword Description
 stable

Waypoints The Waypoints are stable and are saved in a .json file, which

allows you to access it for further use
 stable Position marker Also, in the .json file with the timestamp you can also

understand, when the waypoint was saved
 unstable Localization Here we have a bug into the sensor fusion part, but we were

not jet able to localize it. Because the modules have a
strongly dependency under each other’s the following tasks
are not really stable.

 (stable) Simulation testing In isolated condition the simulation testing works, but when
it comes to test the project outcome it fails, because the
robot is not able to drive stable

 (stable) Path planning If there is a navigation goal send, the local and the global
path planning works well

unstable Driving control The planed path is quite good executed, but sometimes the
robot drives backwards

 (stable) Obstacle avoidance The Lidar is working well and detecting the static objects, it
can happen, that the robot

 stable

Disabling
alternative paths

This feature is working good and stable

 (stable) Mapping The map is created, but if the robot begins to lose himself in
the simulation the output of her is not usable

 stable Documentation Was written shortly before submission, could have been
done better, if there were more time left

 stable Legal requirement The robot drives not faster than 5 Km/h
 stable Open source code Ros packages or self-written code
 stable Modularity If you want to implement an other position system (for

example for indoor navigation) you will need to implement
this into the Python-Human-Machine-Interface

 stable Programming
language

Ros and Python and also a good code documentation and
description

 stable Framework -
 stable Calculations -

Table 5: How good is the project outcome

7. Conclusion
 ROS is not just a python-file with a few functions, it is an operation-System. So it is quite hard

to get into it.
 We have learned very much about ROS and how the basic Models are working together.
 It was also a good training for our upcoming bachelor thesis to know how to face a big project

like this one was.
 As a team we three had a good time together and our communication under each other was

pretty good.
 Creating the virtual environment was way more time consuming than expected. Reason for

that was the appearance of multiple bugs. The first bug would mess up the whole map once it
was saved, closed and reopened. After time wasting problem finding, a possible cause was
found. If the ctrl+z command was used while creating the map instead of the undo button, this
bug would occur when the map gets opened the next time. Another bug is that the objects on
the map would fall through the ground. Cause for this is, that the density of the ground
sometimes gets set to 0 and can be solved by setting it to a higher value. There was no solution
found to stop the bug from appearing. The last bug is, that textures on newly imported models
wont show or get messed up and look very strange. There was no solution found for this bug
and the newly imported models are all grey.

 At the end of the project, we were not able to keep up with our time plan, because the
implementation of the different ROS packages turned out to be more difficult than expected.

 A good Documentation of the ROS packages is kind of hard to get. There is quite few
information about the theoretical aspect of the ROS packages on the internet but when it
comes to the implementation in your own project, you are mostly quite lost.

 Unfortunately, we were running out of time, and we were faced to finish the programming
or implementation of the ROS packages and start to write the documentary and create the
Movie. There for we were not able to write a good and reproducible testing routine.

8. Further development
 Fixing the robots behaviour not to drive backwards. Also make the forward path planning

smarter, in order to the escape behaviour. For example, if you let the robot drive in a corner
he will be trapped, because he should not drive backwards.

 Get a solution for the drift in the State Estimation. In our logic the global state estimation and
the GPS should be close together and the local state estimation is allowed to drift. However,
in our print of the different state estimations the global state estimation is the one who drifts
away. We have made a plot function to visualize this issue [figure 24]
We already calculated the transformation between the different frames without any changes.
It is likely, that the problem is caused by a wrong setting in the different simulated sensors.

Figure 24: Plot from the different State estimations

9. Register
All illustrations without any source data were made by the creators of this document.

Figures
Figure 1: Crop rows with robot ... 4
Figure 2: System boundaries ... 6
Figure 3: Virtual robot model .. 7
Figure 4: 2D grid map .. 8
Figure 5: 3D grid map .. 8
Figure 6: Different path finding algorithms - open area ... 10
Figure 7: Different path finding algorithms – labyrinth .. 10
Figure 8: Sensors available on the robot ... 13
Figure 9: The Lidar in action .. 14
Figure 10: Graphic of the Ros Architecture ... 15
Figure 11: Local State Estimation .. 16
Figure 12: Global State Estimation: ... 16
Figure 13: CAD robot model and the different frames ... 17
Figure 14: The static MAP.. 18
Figure 15: Local Cost map ... 19
Figure 16: Global cost map .. 20
Figure 17: The main() function .. 21
Figure 18: Saving current waypoint ... 21
Figure 19: Show all saved waypoints ... 22
Figure 20: Move to function .. 22
Figure 21: Delete an entry ... 23
Figure 22: Minimalistic field .. 24
Figure 23: Filled field ... 24
Figure 24: Plot from the different State estimations .. 29

Tables
Table 1: Specifications ... 5
Table 2: Decision summary ... 12
Table 3: Short listed outcome ... 25
Table 4: Outcome with explanations .. 26
Table 5: How good is the project outcome ... 27

Attachment
Concept_desicion.pdf

Project_status_v4.pdf

Specification_book_signed.pdf

README.pdf

