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Abstract 
Definition of Task This project aims to develop a module for autonomous waypoint navigation 

and mapping. It will enhance the autonomy of an existing agricultural robot, 
belonging to Ant Robotics Gmbh. 

Goal The module’s task is to localise the robot’s own position on a given map. 
Outside of crop fields, it should automatically find a path to another selected 
position and autonomous follow this path. The collected data will create a 
map, which will be saved locally. 
Since the robot will work in the same environment as humans, it is important 
that the robot won’t crash with humans. 

Approach Different possible solutions were collected and discussed with the client until 
the most suitable possible solution was found. To prevent unnecessary work 
and problems, the internet was searched to find possible open source 
solution that can be partially used in this project. To test the module, a virtual 
world was created to simulate a more realistic environment. 

Essential outcome In the process of this project a ROS module was created, that allows the 
client’s agriculture robot to plan a path to its destination and drive there 
autonomously. To test the created software, a virtual world was created to 
simulate the robot. 

Keywords Waypoint Navigation, Localisation, ROS 
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Abbreviation 
ROS  Robot Operating System 
IMU Inertial measurement unit 
LiDAR Light detection and ranging 
GPS Global position system 
GPS - WGS84-format Position in -> longitude & latitude: 

(8.89999984, 49.899999963) 
GPS - UTM-format Position in zones:  

    z: 32 
    l: U 
    x: 492818.42723554146 
    y: 5527517.131716844 

 

1. Introduction 
Context 
The Client of this project is Ant Robotics. Ant Robotics is a Start-up from Germany that develops and 
produces support robots for agriculture. 

Robot Description 
The robots task is to support workers during the harvest of fruits and vegetables, reducing non-
productive time spent on transporting crates. It will slowly follows the workers and carry their crates. 

Assignment 
In this project, an additional software module for this agriculture support robot has to be developed. 
The module’s purpose is to make the robot more autonomous. With this module, the robot should be 
able to autonomous drive to a selected destination, plan a short path to the destination and avoid 
obstacles on its way. 

Approach 
Once the details of the project were clear, it has been researched about the current state of the art of 
localisation and path finding. After a few possible solutions were found, it has been decided on which 
one to use. With this information the development of the module could be started. To test the module, 
a small virtual world has been created, where a virtual model of the robot could drive around. 

  



2. Clarification of the task 
In this chapter, the task and the already existing robot from Ant Robotics will be described in more 
details. 

Setting 
The ROS module that will be developed during this project, is to make an agriculture support robot 
more autonomous. The robot’s work environment is on fields with crop rows, where human workers 
pick vegetables or similar products. Normally the human workers have to walk to the end of the field 
once their crate is full to get a new empty one. Since this is unproductive time, this robot was 
developed to slowly follow the human workers, carry their crates and enable them to work more 
productive. Now there is still a human worker needed to manually drive the robot to the next crop row 
or to an unloading station once it’s fully loaded. The module that will be developed during this project 
shall give enough autonomy to the robot, that it can do these tasks on its own. 

 
Figure 1: Crop rows with robot 

 
https://www.youtube.com/watch?v=0zSuqwCQMwk 

 

 

 



Specifications 
Following are all the must specifications listed. For all specifications, see 
“Specification_book_signed.pdf” in the attachment. 

Waypoints Waypoints define the goal for path planning. One goal at a time is 
defined by a module outside the system boundaries. Waypoints are 
defined as a coordinate in the world frame. 

Position marker Starting position and important markers for the return journey 
(transition field - road) can be saved on request. 

Path planning The robot can plan its movement from the current position to the 
next waypoint. 

Driving control A control algorithm regulates the execution of the planned path. 
Obstacle avoidance On an encounter with an obstacle, alternative paths can be calculated 

or the robot is stopped if no safe alternatives are found. 
Disabling alternative paths Obstacle avoidance can be turned off, for example inside crop rows. 

This is a safeguard to prevent damage to plants. 
Mapping A 2D map of fixed size (determined in runtime by another module) is 

created and saved. It receives obstacle data and crop row positions to 
add to the map. 

Localisation The robot can localise itself in the map and with the help of 
positioning data (for example GPS). 

Documentation The contractors will write a report about the project and hand it over 
at the end of the project. In addition a presentation will be held and 
a short video is produced showcasing the project functionality. 

Legal requirement The client takes care of the legal requirements. Only legal 
requirement the contractors have to keep in mind, is the robots 
current speed limit of 5km/h. 

Open source code Open source code may be used in the project when it makes sense, 
but usage of any such component must be green-lit by Ant Robotics 
first. 

Modularity The software project shall be modular in its nature, such that it can 
use the data provided to it by other ROS packages independent of the 
data source. It will be activated and commanded by another module. 

Simulation testing The project is software based and shall work on the simulation 
without the robot or additional hardware. 

Programming language The project should be developed with C++. Alternatively, python can 
be used for development. 

Framework The module is based on ROS1 Noetic. 
Calculations All calculations and actions are done and saved locally on board. 

Table 1: Specifications 

  



System boundaries 
In the following illustration you can see the boundary of the already existing part from Ant Robotics 
(green) and the boundary of the task (red).  

 
Figure 2: System boundaries 

 

Preliminary work 
The client already built a working robot before this project started. The robot has following sensors on 
board: 

- Wheel encoder 
- IMU 
- 3D camera 
- 2D LiDAR 

This robot is already able to do certain tasks on its own (also see 2. Clarification of the task). 

For easier testing, the client also created a virtual model of the robot to use in a virtual environment 
and made it accessible for this project.  

The client also gave many useful tips regarding programming ROS. 

 



 
Figure 3: Virtual robot model 

 

Project plan 
The roadmap for the project can be found in the “Project_status_v4.pdf” file in the attachments. The 
roadmap shows what task is planned in which week of the year. In week 51, a one-week buffer was 
added for holidays and to compensate eventual delays. 

3. State of the art 
In this chapter, the results of the state of the art research will be shown. Different possible solutions 
were found and later it was agreed on one concept. For more detailed information about the concept 
see “Concept_desicion.pdf” in the attachments. 

Mapping 
For mapping, two possible solutions were found: 

- 2D grid map 



 
Figure 4: 2D grid map 

https://risc.readthedocs.io/_images/ros_map.jpg 
 

- 3D grid map 

 
Figure 5: 3D grid map 

https://wiki.ros.org/ccny_rgbd/keyframe_mapper?action=AttachFile&do=get&target=3rooms_oct
omap.png 

 



Since the robot is big and is supposed to work on a more or less flat field, there is no real benefit of 
having a third dimension. On top of that, a 3D grid map needs a lot more storage space especially on 
large fields. With this information, it was decided to use a 2D grid map. 

Localisation 
For localisation, two possible solutions were found: 

- GPS only 
- GPS and IMU data 

For localisation on an open field, some kind of GPS is the most obvious solution. But soon the question 
came up if GPS alone is robust enough for autonomous driving and what would happen if the robot 
loses the GPS signal for a moment. Luckily the robot already has a IMU integrated. The IMU itself is 
very inaccurate for autonomous driving, especially on an uneven underground. But it should be good 
enough to just keep its path until the robot gets the GPS signal again. That’s why it was decided to use 
GPS and IMU data. 

Path smoothing 
For path smoothing, two possible solutions were found: 

- Path smoothing algorithm + PID controller 
- Pure pursuit controller + local planer (real time path adaptation) 

Because the robot hasn’t a narrow turning radius, a path smoothing element is needed. Both of the 
two found possible solutions would have a similar result. But since the first solution needs more steps 
to get a similar result, it was decided to use the Pure pursuit controller. 

Object detection 
For object detection, two possible solutions were found: 

- 2D LiDAR only 
- 2D LiDAR + 3D camera 

The robot has currently mounted a 3D camera, on its top facing down, to detect crop rows and 
obstacles in front of the robot. Because of its small field of view, it was already decided beforehand to 
add a 2D LiDAR and increase its sight with that. The problem that occurred here is, that the 2D LiDAR 
can’t be mounted to low, because plants might interfere with the sensor. But because of that it won’t 
be able to detect the crop rows and crates. That’s why it is necessary to combine these two sensors. 
To do so, it is necessary to transform the 3D camera data to a 2D point cloud and merge it together 
with the 2D LiDAR point cloud. 

Because the client already has a ROS module that reads the 3D camera data, it was decided that the 
client will integrate the 2D LiDAR into the already existing module. The module, which will be 
developed in this project, will receive the already transformed 2D point clouds from the existing 
module. 

  



Path finding 
For path finding, two possible solutions were found: 

- Dijkstra algorithm 
- A* algorithm 

 
Figure 6: Different path finding algorithms - open area 

 
Figure 7: Different path finding algorithms – labyrinth 

https://www.youtube.com/watch?v=aW9kZcJx64o 
 

The Depth First Search and the Broad First Search algorithms are old algorithms that are either slow or 
won’t provide the shortest path. 



A* is the most common path finding algorithm nowadays. It finds the shortest path (in rare cases it’s 
not the very shortest but still a very short path) and it’s also very fast to do so.  

The Dijkstra algorithm is mainly used when there are areas on your map that need to be weighted. For 
example, when a specific area is dangerous to drive through and should be avoided or when a specific 
area is easier to drive through than other parts of the map. The Dijkstra algorithm is also able to plan 
a path through multiple destinations instead of just one. 

The robot however will work on a map that can be unknown previously. Therefore, weightings would 
have to be added manually once the map is discovered or the robot would have to add them ongoing 
while driving around the map. Adding weightings manually is not a good solution for this project since 
the customers who will use the robot, can’t be expected to any knowledge about robots. This could 
bother the customers because additional work is required and could lead to problems caused by 
incorrectly operating the robot. Furthermore adding weightings once the map is fully discovered 
probably means that the work is already done anyways.  

Since it’s also not necessary to plan a path for multiple destinations at once, it was decided to use the 
A* algorithm. 

  



4. Concept 
In this chapter is a short summary of the decisions that were made together with the clients. Followed 
by a description of the concept for this project. 

Decision summary 

Problem Solution Reason for the decision 
Mapping 2D grid map A 2D grid map was chosen because it’s 

enough for this project and there’s no 
benefit of adding a third dimension. 

Localisation GPS and IMU The GPS data are used to localise the robot 
and the IMU data will be used to calculate 
the current position, in case the GPS signal 
is lost. 

Path finding A* algorithm The A* algorithm was chosen because it is 
the fastest algorithm up to date and also 
delivers the shortest path. 

Path 
smoothing 

Pure pursuit controller + local planer 
(real time path adaptation) 

This solution was chosen because the other 
possible solution might have caused more 
work for a similar result. 

Object 
detection 

2D Point cloud multiple sources There are two sensors for object detection 
available on the robot. A 2D LiDAR and a 3D 
camera. The 2D LiDAR can’t be mounted to 
low, because plants on the ground might 
interfere with it. To still detect obstacles on 
the ground the data from the 3D camera are 
needed.  
The data will be transformed by the client 
and isn’t part of this project. For this project 
the finished 2D point clouds will be 
available.  

Table 2: Decision summary 

Concept description 
The robot is supposed to start in an unknown environment. To be able to work in an unknown 
environment, it got 3D camera and a 2D LiDAR sensor to sense obstacles in front of it. The robot already 
transforms these data to 2D point clouds and makes them available for it’s modules. These data can 
be used to continuously create a 2D grid map. The map data can be saved locally. 

The module should enable the robot to autonomously drive to a selected destination. To do that, a 
path from the current location of the robot to its destination is needed. To accomplish that, the A* 
algorithm can be used to find the shortest path to its destination. Because of the robot’s turning radius, 
the path has to be smoothed with the pure pursuit controller. 

In case that new obstacles appear while the robot drives through an unknown area or in case the 
already discovered area changes, the module needs a local planer to adjust its path if necessary. 
  



5. Realisation 
Robot and Software Description 

Physical robot 
The robot is an agricultural vehicle used for transporting crates. The software module shall not depend 
heavily on the physical properties of the robot, so that it can be used on different robots. Physical 
constraints that were taken in account is the non-holomorphic nature, the robot has a minimum 
turning radius. 

Sensors available on the robot 
The sensors which are mounted or will be mounted to the robot are the input sources for our system 
[figure 8]. The implementation of the sensors into the ROS environment is outside the system 
boundaries of our module and is done by Ant Robotics. For the development of our module, all sensors 
were simulated in ROS. 

 

 
Figure 8: Sensors available on the robot 

 

These following sensors were included: 

• RTK-GPS 
For absolute positioning information. An RTK-GPS has a ground station near the operating 
robot, which improves accuracy. 

• 3D camera 
The 3d camera provides colour images and a 3D point cloud matching each pixel. It may be used 
to identify crates lying on the ground. The image processing and 3D point cloud analysis is not 
part of our module. The input to the module from the camera was modelled as a second lidar 
scanner close to ground level. 



• 2D lidar scanner 
Lidar scanners produce distance measurements on a (usually) horizontal plane around them. 
The lidar scanner is mounted in the front of the robot and does not cover the rear. The data 
produced is used for obstacle avoidance and for mapping [figure 9]. 

• Inertial Measurement Unit 
The IMU produces acceleration data and turning velocities of itself. These can be used for 
position estimation via integration. 

• Wheel encoders 
The wheel encoders measure how much each wheel has turned. With this data, odometry can 
be calculated, which is a position estimation based on the revolutions of the left and right 
wheel and the wheel diameter. 

 

Figure 9: The Lidar in action 

 

  



System architecture of ROS 
ROS is a modular framework. Several open-source packages were used, as well as the standard 
installation of ROS of course. Not all packages contained in ROS can be mentioned here, a selection of 
the high-level packages was made [figure 10]. A full list of all ROS packages is in the attachments. 

 
Figure 10: Graphic of the Ros Architecture 

 

ROS provides a framework for information exchange, between different programs called nodes. 
Information is exchanged on channels called topics, to which any given node can subscribe (listen to) 
or publish onto. A publication is called a message which can contain different standardised 
information, for example position, time or error messages. 

The software will be presented following the information flow starting from the sensors and ending 
with the control algorithms and outputs of the system. 

GPS transformation 
The GPS data needs to be transformed from the global WGS84-format (latitude and longitude) to the 
coordinate system of the robot. A node from the open-source robot_localization package is run for 
this purpose. 

Sensor Fusion 



Figure 11: Local State Estimation 

To achieve a more reliable result, the robot averages all information that is available and outputs a 
probabilistic position estimation. For the calculations an extended Kalman filter was used. The 
robot_localization package available as open-source is an implementation of such an extended kalman 
filter and was used in this module. Two position estimations are calculated. 

The first node, called the local ekf node [figure 11], fuses the odometry data and the imu data. Both 
sources are continuous, and the result is a continuous position estimation. However, the error 
accumulates with time and makes the estimation drift. This is due to the relative nature of the sensor 
data, both the IMU and the wheel encoders only measure changes in position. 

The second node is called the global ekf node and tries to remedy the drift by integrating the absolute 
GPS data [figure 12]. 

Figure 12: Global State Estimation: 

It fuses the GPS data with the same inputs as the first node, the odometry and IMU data. This time, 
the output is no longer continuous as the GPS data can jump from one measurement to the next. This 



can be detrimental for map building and matching scans, which is the reason a node with only 
continuous data is kept in parallel. 

Physical robot model and frames 
The CAD model and its setup in Gazebo, the simulation engine of ROS, was provided by the company 
[figure 13]. 

 
Figure 13: CAD robot model and the different frames 

 

Before diving into the mapping and localization, it makes sense to take a step back and use the physical 
model of the robot as the example for introducing frames. 

The heart of the simulated robot is the base_link. This is the reference piece for all parts mounted to 
the robot and it moves with the robot. Wheels, sensors and so on are all defined in their position in 
reference to the base_link. 

The base_link is called a reference frame. Analog to the base_link, there exists a frame (coordinate 
system) for the odometry and a third for the map. The odometry frame describes the location of the 
robot in relation to its start point. The map coordinate system should be fixed in relation to the real 
world and describes the absolute position of the robot. 

The transformation between different frames can either be static or dynamic. A static transformation 
describes the position of the Lidar sensor in relation to the base_link, it never changes. A dynamic 
transformation describes the position of the robot in the map frame. 

Localization 
The heart of the localization process is the open-source gmapping package. It takes as input the fused 
odometry data from the global ekf node and the laser scans from the lidar. Once integrated, it will also 
take into account the data from the 3d camera, transformed into planar laser scan message. It tries to 
transform each incoming scan into the odometry frame and match it to the already existing map data. 
It outputs the estimated transformation from the odometry frame to the world frame, as well as 
continually updating the map it is constructing. On this map it can also clear obstacles that are no 
longer in place [figure 14] 



 
Figure 14: The static MAP 

 

The constructed map can be saved and later reloaded with the help of the open-source map_server 
node. If the robot is driving in an already known map (without updating it), the open-source amcl node 
is used, which implements an adaptive Monte Carlo localization approach. 

Navigation 
The Navigation is based on the open source navigation package. It creates a global [figure 16].  and a 
local cost map [figure 15]. For the global cost map, an existing map that is loaded can be used as the 
basis. The cost map is where the robot keeps track of obstacles and they are used for path planning. 
To ensure that obstacles are cleared when navigating, an inflation layer is applied to the cost map to 
increase the size of all obstacles before applying the path finding algorithm. 



Figure 15: Local Cost map 

 

The global cost map is updated more slowly than the smaller local cost map. The global cost map spans 
the whole known map and is used for the global path planning to the navigation goal. In that way, 
known obstacles can be avoided even if they are far away. 

The local cost map is smaller and serves as the basis for the local path planner. It reacts more quickly 
and also takes into account the physical possibilities of the robot, such as the minimum turning radius. 
For the local path planner, teb_local_planner was chosen as it supports non-holomorphic robots with 
Ackermann drive and also supports dynamic obstacle input from a separate node. 

The navigation node sends a message with linear and angular speed to the external ROS node 
controlling the motor drivers. 



Figure 16: Global cost map 

 

The Human Machine Interface 
To get in touch with the robot we have written a Python file as a Human-Machine-Interface. This allows 
us to get information from the robot and also send some commands to the robot. In the next few 
sections, we will give you a little overview of the structure and sub functions from the Python file. 

Note, if you are interested in more details check the attachment or the README.md in the 
fhgr_waypoints folder. 



 

Main() 
In the [Figure 17] you see the main menu routine. 
At the beginning, the program creates the Start 
point, in order to do that, the current global 
position, the robots orientation and the current 
time will be saved as a dictionary. If a Trailer point 
is available he will also be saved in a dictionary. In 
case that the Trailer point is not available, he will 
be set equal to the Start point.  After creating 
those dictionaries they will be saved in a .json file. 

 You can choose between several options which 
are displayed to a command prompt, like: 

- Save the current positon 
- Show all saved waypoints 
- Move to a user given goal 
- Or delete a waypoint entry 

Saving 
If you want to save the current robot position, you 
can run the saving_curent_waypoint function, 
which is explained in the [figure 18]. 

Therefore, the program will get the x- and y-GPS-
Coordinates and the robots orientation from ROS. 
This information and the current timestamp will be 
saved in a dictionary. The whole dictionary gets 
saved in a .json-file. And the main() menu will be 
displayed again 

 

 

Figure 17: The main() function 

Figure 18: Saving current waypoint 



 

Show saved waypoints 
The [figure 19] get an overview of the three different 
output methods of the saved waypoints. 

You can choose between: 

- Two different numeric console outputs, 
which are showed in the [figure 19]   

- Or one plot output. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Show all saved waypoints 

Figure 20: Move to function 



The information of the waypoints is stored in the .json file. If you choose the plot output, it will display 
the waypoints with the relative distance to the start-point by default. If you are interested in the global 
position of the waypoints, you can also do that, and you will see the waypoints with the latitude and 
longitude values. 

 

Move 
To move the robot, you can have a look at the [figure 20]. There you 
have three options: 

- You can let the robot move to his Start point 
- Move to the Trailer 
- Or give him your own x- and y-coordinates and an orientation 

If you want to let the robot move to user-given-coordinates you 
have the choice between relative or absolute coordinates. The 
relative coordinates are relative to the robots start-point and the 
absolute coordinates are written in latitude and longitude. The 
orientation is sent with Euler-angle in degrees around the z-axis (0 
+- 180) 

Delete 
In order to delete a waypoint entry, you can call the function 
delete() in [figure 21] 

The program gets all saved waypoints from the .json file and prints 
them to the screen. You can now easily choose the number of the 
waypoint you would like to delete. 

6. Testing 
In this chapter the testing process and the virtual environment are described. 

Virtual environment 
One of the specifications for this project is that this project is software based and can be tested in a 
simulation without the real robot or additional hardware. See “Specification_book_signed.pdf” in the 
attachment for more details about this specification. 

The client already created a virtual model of the robot and made it accessible for this project. But to 
actually be able to test the module with the virtual model, it was necessary to create a small virtual 
world that contains objects, similar to what the real robot would encounter. 

At first a minimalistic world was created to resemble small strawberry field and a place to unload the 
crates. This world was created to keep the processing power and the loading time low for easier 
development. 

 

Figure 21: Delete an entry 



 
Figure 22: Minimalistic field 

1. Minimalistic strawberry field 
2. Unloading place 

Based on this empty world, another world was created. This world contains parts of possible 
environments.  

3. Place to unload creates 
4. Moving object (simulating a human slowly walking around the blue area) 
5. Wide crop rows (wide enough for the robot to drive between the rows) 
6. Narrow crop rows (narrow enough for the robot to drive with the rows between its wheels) 
7. Crates (randomly placed crates that might be an obstacle on a real field) 
8. Tree rows (trees could be an obstacle on a real field) 
9. Indoor rows (with and without additional light sources) 

 

 

 

 

 
Figure 23: Filled field 



For testing our project outcome, we oriented ourselves on the specification book. The short outcome 
is listed in [table 3] listed in short as follows: 

Nr Status Keyword Description 
1 pass 

 
Waypoints Waypoints define the goal for path planning. One 

goal at a time is defined by a module outside the 
system boundaries. Waypoints are defined as a 
coordinate in the world frame. 

2 pass Position marker Starting position and important markers for the 
return journey (transition field - road) can be saved 
on request. 

3 pass Path planning The robot can plan its movement from the current 
position to the next waypoint. 

4 pass Driving control A control algorithm regulates the execution of the 
planned path. 

5 pass Obstacle avoidance On an encounter with an obstacle, alternative paths 
can be calculated or the robot is stopped if no safe 
alternatives are found. 

6 pass 
 

Disabling alternative paths Obstacle avoidance can be turned off, for example 
inside crop rows. This is a safeguard to prevent 
damage to plants. 

7 pass Mapping A 2D map of fixed size (determined in runtime by 
another module) is created and saved. It receives 
obstacle data and crop row positions to add to the 
map. 

8 (pass) Localization The robot can localize itself in the map and with the 
help of positioning data (for example GPS). 

9 pass Documentation The contractors will write a report about the project 
and hand it over at the end of the project. In 
addition a presentation will be held and a short 
video is produced showcasing the project 
functionality. 

10 pass Legal requirement The client takes care of the legal requirements. Only 
legal requirement the contractors have to keep in 
mind, is the robots current speed limit of 5km/h. 

11 pass Open source code Open source code may be used in the project when 
it makes sense, but usage of any such component 
must be green-lit by Ant Robotics first. 

12 pass Modularity The software project shall be modular in its nature, 
such that it can use the data provided to it by other 
ROS packages independent of the data source. It 
will be activated and commanded by another 
module. 

13 partial Simulation testing The project is software based and shall work on the 
simulation without the robot or additional 
hardware. 

14 pass Programming language The project should be developed with C++. 
Alternatively, python can be used for development. 

15 pass Framework The module is based on ROS1 Noetic. 
16 pass Calculations All calculations and actions are done and saved 

locally on board. 
Table 3: Short listed outcome  



 

The [table 4] shows the testing documentation with explanations: 

Nr Status Keyword Description 
1 pass 

 
Waypoints With the Python file as Human machine interface we can 

load defined waypoints from a .json file and save them. 
Sending waypoint goals is also possible 

2 pass Position marker This is done with the Python file with the ‘Saving Waypoint’ 
function 

3 pass Path planning For this we have a local and global planning algorithms from 
a Ros package 

4 pass Driving control The Ros package ‘teb_local_planer’ takes this task, for fine 
tuning there is a handy simulation where you can put 
obstacles in the calculated way of the robot and see, how 
he will change his path to the goal. 

5 pass Obstacle avoidance Therefor we simulated a Lidar, which is able to detect 
incoming obstacles. Afterwards the local- and global- 
planning algorithms from a Ros package take over to 
calculate the way around the obstacle 

6 pass 
 

Disabling 
alternative paths 

During the crop rows the Ant Robotics algorithm taking over 
the steering, our package is then reduced to map-only-
mode 

7 pass Mapping This task is done by the Ros module map-server. To save the 
created world a shell-command is necessary  

8 (pass) Localization With the ‘robot_localization’ package we were able to fuse 
the Odometry-, IMU- and GPS-data. But it’s buggy 

9 pass Documentation This is achieved while you are reading 
10 pass Legal requirement - 
11 pass Open source code Done by using Ros packages and write other code by our self 
12 pass Modularity To achieve this we created our own Ros package. The 

Python file is ready to take some other data for localization 
13 partial Simulation testing Due to the fact, that our robot is not able to move properly 

the subject testing could not been executed. 
14 pass Programming 

language 
For the human machine interface, we decide to write it in 
Python. It makes the plotting easier and also the 
understanding of the code itself. Additionally its not a time 
critical task 

15 pass Framework Only ROS 1 noetic in use 
16 pass Calculations All calculations and actions are done and saved locally on 

board. 
Table 4: Outcome with explanations 

For testing we had multiple runs in the simulation where we could see if the implemented packages 
and functions run properly. If not, there were the option to fine tune the parameters. Also, the 
different functions and requirements flow into each other. So, you can let the robot move to a point 
where under the hood the path planning, the map server, the lidar and the localization algorithms is 
running together. 

As you can see, the testing in isolated conditions was mostly successful. BUT we had a major challenge 
to deal with, which is the fact, that our robot is not able to move properly. Unfortunately, we were 
running out of time, and we were faced to finish the programming or implementation of the Ros 



packages and start to write the documentary and create the Movie. There for we were not able to 
write a good and reproducible testing routine. 

Another thing to point out is the enormous computing power that the simulation needs. The fans of 
our Laptops where going insane but the output was quite poor. So we could not really load the self-
made-real-looking-world and let the robot explore in it. The simulation was quite jerky. 

How good is the outcome? 
The table below [table 5] shows on the left colourful how the project outcome works. In the Status cell 
you will see if the outcome is stable or not. 

 Status Keyword Description 
 stable 

 
Waypoints The Waypoints are stable and are saved in a .json file, which 

allows you to access it for further use 
 stable Position marker Also, in the .json file with the timestamp you can also 

understand, when the waypoint was saved 
 unstable Localization Here we have a bug into the sensor fusion part, but we were 

not jet able to localize it. Because the modules have a 
strongly dependency under each other’s  the following tasks 
are not really stable.  

 (stable) Simulation testing In isolated condition the simulation testing works, but when 
it comes to test the project outcome it fails, because the 
robot is not able to drive stable 

 (stable) Path planning If there is a navigation goal send, the local and the global 
path planning works well 

 
 

unstable Driving control The planed path is quite good executed, but sometimes the 
robot drives backwards  

 (stable) Obstacle avoidance The Lidar is working well and detecting the static objects, it 
can happen, that the robot  

 stable 
 

Disabling 
alternative paths 

This feature is working good and stable 

 (stable) Mapping The map is created, but if the robot begins to lose himself in 
the simulation the output of her is not usable 

 stable Documentation Was written shortly before submission, could have been 
done better, if there were more time left 

 stable Legal requirement The robot drives not faster than 5 Km/h 
 stable Open source code Ros packages or self-written code 
 stable Modularity If you want to implement an other position system (for 

example for indoor navigation) you will need to implement 
this into the Python-Human-Machine-Interface 

 stable Programming 
language 

Ros and Python and also a good code documentation and 
description 

 stable Framework - 
 stable Calculations - 

Table 5: How good is the project outcome 

 

  



7. Conclusion 
 ROS is not just a python-file with a few functions, it is an operation-System. So it is quite hard 

to get into it. 
 We have learned very much about ROS and how the basic Models are working together. 
 It was also a good training for our upcoming bachelor thesis to know how to face a big project 

like this one was. 
 As a team we three had a good time together and our communication under each other was 

pretty good. 
 Creating the virtual environment was way more time consuming than expected. Reason for 

that was the appearance of multiple bugs. The first bug would mess up the whole map once it 
was saved, closed and reopened. After time wasting problem finding, a possible cause was 
found. If the ctrl+z command was used while creating the map instead of the undo button, this 
bug would occur when the map gets opened the next time. Another bug is that the objects on 
the map would fall through the ground. Cause for this is, that the density of the ground 
sometimes gets set to 0 and can be solved by setting it to a higher value. There was no solution 
found to stop the bug from appearing. The last bug is, that textures on newly imported models 
wont show or get messed up and look very strange. There was no solution found for this bug 
and the newly imported models are all grey.  

 At the end of the project, we were not able to keep up with our time plan, because the 
implementation of the different ROS packages turned out to be more difficult than expected. 

 A good Documentation of the ROS packages is kind of hard to get. There is quite few 
information about the theoretical aspect of the ROS packages on the internet but when it 
comes to the implementation in your own project, you are mostly quite lost.  

 Unfortunately, we were running out of time, and we were faced to finish the programming 
or implementation of the ROS packages and start to write the documentary and create the 
Movie. There for we were not able to write a good and reproducible testing routine.   

 

8. Further development 
 Fixing the robots behaviour not to drive backwards. Also make the forward path planning 

smarter, in order to the escape behaviour. For example, if you let the robot drive in a corner 
he will be trapped, because he should not drive backwards. 

 Get a solution for the drift in the State Estimation. In our logic the global state estimation and 
the GPS should be close together and the local state estimation is allowed to drift. However, 
in our print of the different state estimations the global state estimation is the one who drifts 
away. We have made a plot function to visualize this issue [figure 24] 
We already calculated the transformation between the different frames without any changes. 
It is likely, that the problem is caused by a wrong setting in the different simulated sensors.  



 
Figure 24: Plot from the different State estimations 

 

9. Register 
All illustrations without any source data were made by the creators of this document. 
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